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Last lecture

* Recipes of constructing tensors from graphs

* Three correspondences of structures

Graphs Tensors

Perfect matching Non-zero det

Isomorphism Isomorphism

Independentrets Totally-Botropic space



Matrices of linear forms: where graphs and tensors meet

* You’ve (probably) seen matrices of 
linear forms
  - One way to encode 3-tensors

* From a graph, we can build special 
matrices of linear forms
  - From Tutte and Lovász

(1) Bipartite: each variable appears 
in (at most) one position;
(2) Undirected simple: each variable 
appears in (at most) two positions.
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Tensor Isomorphism in cryptography

* Our current Internet security relies on factoring and discrete logarithm

* If a quantum computer was built, they would not be secure (Shor’s algorithm)

* NIST started the “post-quantum cryptography competition” in 2017

* The most recent call for additional digital signature schemes
- MEDS (meds-pqc.org): 3-tensor isomorphism
- ALTEQ (pqcalteq.github.io): alternating trilinear form equivalence
- LESS (less-project.com): code equivalence

* These problems resist current quantum algorithm techniques 
[Hallgren-Moore-Rotteler-Russell-Sen]



Today’s lecture: questions and techniques

* Graph Isomorphism: universality in testing isomorphism of combinatorial structures
- Directed graph iso, hypergraph iso, line graphs, homeomorphism of 
2-complexes…

* Tensor Isomorphism: universality in testing isomorphism of algebraic structures?

- Polynomial isomorphism, group isomorphism, algebra isomorphism…

* Universality: either “containment” of orbit structures [Gelfand and Panomerav]
  or polynomial-time reductions



Comparing orbit structures of different actions
* Gelfand and Panomerav used the following to compare group actions

* Suppose G acts on S and H acts on T. The latter action contains the former, 
if there exists a map from S to T that preserves and respects orbits.

* Leads to the tame-wild dichotomy in the representation theory of Drozd. 

//



From group isomorphism to bilinear map isometry

* Group Isomorphism: p-groups of class 2 and exponent p via Baer’s correspondence

* Skew-symmetric bilinear map isometry: U
,
V : fin-dim vector spaces over #p

Input : Bilinear maps f. g : UXU +V

Output : True if IAEGLIU) , BEGLIV) , S .t . Un , veU , f(Alu) , All)= BIg(u ,ul)

False otherwise

* Suppose HF ,
V = Fpm

f : UxU + V is stored as

a 3-way array F ·
F(i , j , k) = f(ei , ej) m



Bilinear map isometry
* Skew-symmetric bilinear map isometry: U

,
V : fin-dim vector spaces over #p

Input : Bilinear maps f . g : UXU +V

Output : True if EAEGLIU) , BEGLIV) , s .t . Vn , v'EU , f(Alu) , Alnl)= BIg(u ,ul)

False otherwise

* Suppose U = #2 ,
V = #ph

M=.I



* Algebra isomorphism problem:

* Imposing conditions (alternating, associativity, Jacobi) give associative or 
Lie algebras

Algebra isomorphism

* Studied in theoretical computer science and computer algebra [Agrawal—
Saxena, Saxena—Kayal, Grochow, Brooksbank—Wilson]

V : fin-dim vector space over IF

Input : Bilinear maps f , g : vxV+ V

Output . True if I AEGL(V) , s . t . Fr . r'eV . FLAIs , Alvi) = A(g(r , vi)

False otherwise .



Algebra isomorphism

* Computing with associative or Lie algebras [Rónyai, Ivanyos, de Graaf]

* Algebra isomorphism problem: V : fin-dim vector space over IF

Input : Bilinear maps f , g : vxV+ V

Output- True if I AEGL(V) , s . t . Fr . reV . F(AIS , Alvi) = A(g(r , vi)

False otherwise .

* Suppose V = FC Representf by its structure constants

·F
F(i , j.k) = f(ei . ej)k



Algebra isomorphism

* Computing with associative or Lie algebras [Rónyai, Ivanyos, de Graaf]

* Algebra isomorphism problem: V : fin-dim vector space over IF

Input : Bilinear maps f , g : vxV+ V

Output . True if I AEGL(V) , s . t . Fr . r'eV . FLAIs , Alvi) = A(g(r , vi)

False otherwise .

* Suppose V = FC Representf by its structure constants

Ax
X-

w = EtI



* Cubic form equivalence:

Cubic form equivalence

* Studied in multivariate cryptography [Patarin, Bouillaguet—Fouque—Véber, Beullens] 

Input : Cubic forms f , g = #[X, ..., Xn]

Output : True if A = (ij)EGLIn . #) . fix , -- , Xn) =g(Xi , ...niXi)
False otherwise



* Cubic form equivalence:

Cubic form equivalence

Input : cubic forms f , g = FIX, ..., Xn]

Output : True if A = (ij)EGLIn . #) . fix , -- , Xn) =g(Xi , ...niXi)
false otherwise.

* Suppose char(#) #2 or 3 . F : F"+ # .

Let F(u . v , w) = f(u + v+w) - f(u+-) - f(n+w) - f(u+w) + f(u) + f(v) + f(w)
&: #" x F

* xF" + # is a symmetric trilinear form

-
F(i , j , k) = Flei , ej , em)

·El



* Cubic form equivalence:

Cubic form equivalence

Input : cubic forms f , g = FIX, ..., Xn]

Output : True if A = (ij)EGLIn . #) . fix , -- , Xn) =g(Xi , ...niXi)
false otherwise.

* Suppose char(#) #2 or 3. By examining symmetric trilinear forms

A X--A

T = Etaut



A brief recap…

* class-2 exp-p 
p-group iso:

* Algebra iso:

* Cubic form iso:

m
- -- T

f, g : UxH + V
/it=

Ax

f , g : n xn + U I
-A

=En
*
z

↳
Dinn =En



Relations between group/algebra/cubic form iso? 
* Can we compare group/algebra/cubic form iso?

* Warm up: can we compare the following matrix problems?

* Matrix equivalence:

* Matrix conjugacy:

- Suppose dim(U)=dim(V)=n, over alg. closed fields

- Matrix equivalence: n+1 orbits (by ranks)

- Matrix conjugacy: infinitely many orbits (by Jordan n.f.)

- Matrix conjugacy is more complicated than equivalence

f , g : U + v

f , g : n + H



Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q, Grochow-Q-Tang] The 
following actions on 3-way arrays are equivalent under containment:
* Tensor isomorphism (UxVxW->F).
* (Symmetric or skew-symmetric) bilinear map isomorphism (UxU->V).
* (Symmetric or skew-symmetric) trilinear form isomorphism (UxUxU->F).
* (Lie or associative) algebra isomorphism (UxU->U).

Main result I



Main result I

* The constructions are efficient, i.e. the dimension increase is only polynomial,
and the procedures can be carried out by polynomial-time algorithms

* So classifying cubic forms and Lie algebras are “equally difficult”.

  - This is in contrast to the matrix case!

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q, Grochow-Q-Tang] The 
following actions on 3-way arrays are equivalent under containment:
* Tensor isomorphism (UxVxW->F).
* (Symmetric or skew-symmetric) bilinear map isomorphism (UxU->V).
* (Symmetric or skew-symmetric) trilinear form isomorphism (UxUxU->F).
* (Lie or associative) algebra isomorphism (UxU->U).



Main result II

* It is also natural to study k-way arrays, and to start with, consider

Theorem. [Grochow-Q] The 3-tensor action contains the k-tensor action for k>3.

U,, Ha
,

-"

, He Vector spaces over #. GL(U , ) x GL(H2) x .. - xGL(Ur)

naturally acts on H .QHzD ... D Um



Main result II

Theorem. [Grochow-Q] The 3-tensor action contains the k-tensor action for k>3.

* But when k>3, the orbit structures “do not become more difficult”.

* Proof makes use of path algebras from representation theory.

* 3-tensors are more difficult than 2-tensors (matrices)

* It is also natural to study k-way arrays, and to start with, consider

U,, Ha
,

-"

, He Vector spaces over #. GL(U , ) x GL(H2) x .. - xGL(Ur)

naturally acts on H .QHzD ... D Um



Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-
Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

↑



Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-
Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

- Star gadgets: 
Degrees of red vertices 
are large enough so blue 
vertices cannot be 
mapped to them

↑



One example of the reductions

Goal
.

Given f, g : HxVXW+F
,
construct J

.
9 : SXS -T

, skew-symmetric
such that f -g under GL(K) XG)(V) xGL(W) if F under GL(S)XGLCT)

F
Construction.

mdim(u) = e S = UV I A

l - -
dim (V) = n ·= T = W

T !t

dim(w) = m -

AnyEnt
-

(Entries outside the orange region are 0).



* This construction does not work because 
GL(S) may mix U with V. So we need:

From tensors to bilinear maps
Construction.

dim(u) = e -n

amor =reA
dim(w) = m

↓

SverA TT = W I !----
!
-

t
-

(Entries outside the orange region are 0).



* This construction does not work because 
GL(S) may mix U with V. So we need:

From tensors to bilinear maps
Construction.

dim(u) = e -n

amor =reA
dim(w) = m

↓

SverA TT = W I !----
!
-

t
-

(Entries outside the orange region are 0).



Perfect matchings and non-zero determinant
Bip . graph G = ([n] @In'] · E)

,
lEl = e

=> Matrix of linear forms MG = B, x , + ... + Bexe , BiEM(n , F)

8 bs. G has a perfect matching () Det (Mc) #0



Hall’s marriage theorem
Bip . graph G = ([n] @In'] · E)

,
lEl = e

=> Matrix of linear forms MG = B, x , + ... + Bexe , BiEM(n , F)

8 bs. G has a perfect matching () Det (Mc) #0

Thm
.

[Hall] G has a perfect matching E) G has no shrunk subset

Def
.
Given G = (LUR

,
E)

,
SEL --=is a shrunk subset of G, --

if IS 1 > IN(s) 1 , where --

N(s) -R is the set of neighbours
of S .



Another correspondence between graph and matrix space structures

Bip . graph G = ([n] @In'] · E) , IEl = e
=> Matrix of linear forms MG = B, x , + ... + Bexe , BiEM(n , F)

8 bs. G has a perfect matching () Det (Mc) #0

Thm
.

[Hall] G has a perfect matching E) G has no shrunk subset

Prop .
Ghas astrunk subset E) Mc has a unde subspace

SEL
, 1S1 > INISII SdimSdins aNIS) &R is the set

i= 1

of neighbours of



A new question about matrices of linear forms

* Invariant theory [King, Bürgin-Draisma, Derksen-Makam], non-commutative algebra 
[Cohn], analysis [Garg-Gurvits-Oliveira-Wigderson]…

Question. Decide if a general matrix of linear forms has a shrunk subspace.

Bip . graph G = ([n] @In'] · E) , IEl = e
=> Matrix of linear forms MG = B, x , + ... + Bexe , BiEM(n , F)

Prop .
Ghas astrunk subset E) Mc has a unde subspace

SEL
, 1S1 > INISII SdimSdins aNIS) &R is the set

i= 1

of neighbours of



Discrepancy when moving from graphs to tensors I

linear matrices

bip graphs w/ non-zero
determinant Sky =

w / perfect matching linear matrices span[][]with neither

bip graphs linear matrices

w/ shrunk subset ~/ shrunk subspaces [00



Discrepancy when moving from graphs to tensors I

* Non-zero det: efficient randomised algorithm. Open: a deterministic efficient one.

* Shrunk subspace: in P by [Garg-Gurvits-Oliveira-Wigderson], [Ivanyos-Q-
Subrahmanyam], [Hadama-Hirai]

- Useful in the Tensor Isomorphism algorithm by Xiaorui Sun

linear matrices

bip graphs w/ non-zero
determinant Sky =

w / perfect matching linear matrices span[][]with neither

bip graphs linear matrices

w/ shrunk subset ~/ shrunk subspaces [00



Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:
- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]

   - A “regularity lemma” for matrix space blow-ups (via division algebras)



Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:
- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]

   - A “regularity lemma” for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:

- Suppose G=(L ∪R, E) is a bipartite graph
- M⊆E is a matching. 
- Can we find a larger matching?
- Alternating path: a path that alternates 
between matched and unmatched vertices
- If an alternating path starts and ends at 
unmatched vertices… we can find a larger 
matching!

-
O O&X
z J



Alternating path method: from graphs to tensors

G = (In] @In'] · El

M = B , x, + .. - + Bexe

BieM(n , #)



Alternating path method: from graphs to tensors

G = (In]@In']
·
E) FCE : a matching

M = B , x, + .. - + Bexe B = a , B , + .. - + aeBe

BieM(n , #)



Alternating path method: from graphs to tensors

G = (In]@In']
·
E) FCE : a matching S2[n] : unmatched left vertices

M = B , x, + .. - + Bexe B = a , B , +- - -+ aeBe ker(B)

BieM(n , #)



Alternating path method: from graphs to tensors

G = (In]@In']
·
E) FCE : a matching S2[n] : unmatched left vertices

M = B , x, + .. - + Bexe B = a , B , +- - -+ aeBe ker(B)

BieM(n , #)

T In'] : matched

right vertices

im (B)



Alternating path method: from graphs to tensors

G = (In]@In']
·
E) FCE : a matching S2[n] : unmatched left vertices

M = B , x, + .. - + Bexe B = a , B , +- - -+ aeBe ker(B)

BieM(n , #)

TEIn'] : matched A walk from left to right
right vertices via unmatched edges

im (B) VEF"
- MLVEBII



Alternating path method: from graphs to tensors

G = (In]@In']
·
E) FCE : a matching S2[n] : unmatched left vertices

M = B , x, + .. - + Bexe B = a , B , +- - -+ aeBe ker(B)

BieM(n , #)

TEIn'] : matched A walk from left to right A walk from right to

right vertices via unmatched edges left via matched edges

im (B) VIF" - M(V)
e

WE#" -> B"(W)
= span ( E Bi (V) =(veV/B()EW)



Linear algebraic alternating path method

* M = B , x, + ... + Bexe . B = a , B , +... + aeBe

Vo = ker (B) = Wi = M(Vo) = V, = B+ (wi) = Wa = M(V , ) = ..



Linear algebraic alternating path method

* M = B , x, + ... + Bexe . B = a , B , +... + aeBe

Vo = ker (B) = Wi = M(Vo) = V, = B+ (wi) = Wa = M(V , ) = ..

* WiEWzEWsE ... EWk = WrH = --

Lemma
.

Wm[lm(B) E) E a shrunk subspace 4 st.
dim(U) - dim(M(U)) = Corank (B)

- [lvanyos - Karpinski-Q-Santha)



Summary

* Graph isomorphism to tensor isomorphism
- The question of equivalences between iso problems for algebraic structures
- Star gadget for graphs vs Identity matrix gadget for tensors



Summary

* Graph isomorphism to tensor isomorphism
- The question of equivalences between iso problems for algebraic structures
- Star gadget for graphs vs Identity matrix gadget for tensors

* Graph perfect matching to tensor non-zero det
- The breakdown of Hall’s marriage theorem, and the shrunk subspace question
- Alternating path method and its linear algebraic counterpart



Summary

* Graph isomorphism to tensor isomorphism
- The question of equivalences between iso problems for algebraic structures
- Star gadget for graphs vs Identity matrix gadget for tensors

* Graph perfect matching to tensor non-zero det
- The breakdown of Hall’s marriage theorem, and the shrunk subspace question
- Alternating path method and its linear algebraic counterpart

* More structure correspondences? 
* More graph-theoretic type questions for tensors?
* More linear algebraic counterparts of graph-theoretic techniques?

- Keep in mind that new phenomena and complications are there for tensors :)



Thank you!

And questions please :) 



Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:
- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]

   - A “regularity lemma” for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:

* G = (LUR , E) ,
MEE is a given matching ,

U = E) M : edges not in M

So &L : unmatched vertices W

=> T , ER : neighbours of So via unmatchededge
- if T , contains an unmatched vertex ,

an augmenting
path is found

- otherwise.



Review of alternating paths on bipartite graphs

* G = (LUR , E) ,
MEE is a given matching ,

U = E) M : edges not in M

So & L : unmatched vertices W

=> T , ER : neighbours of So via unmatchededge
M
-

S, CL : n .
b

. of T ,
via matched

-

edges



Review of alternating paths on bipartite graphs

* G = (LUR , E) ,
MEE is a given matching ,

U = E) M : edges not in M

So & L : unmatched vertices W

=> T , ER : neighbours of So via unmatchededge
M
--

S , <L : n .
b

. of T, via matched U

edges
=) TzER : n . b . st S , via unmatched edges

- Check if T2 contains an unmatched vertex
- Yes : augmenting path. No : continue



Review of alternating paths on bipartite graphs

* G = (LUR , E) ,
MEE is a given matching ,

U = E) M : edges not in M

So & L : unmatched vertices W

=> T , ER : neighbours of So via unmatchededge
M
--

S, CL : n .
b

. of T ,
via matched

U

edges
=) TzER : n . b . st S , via unmatched edges

- Check if T2 contains an unmatched vertex
- Yes : augmenting path. No : continue

"
STOP if Ti consists of matched vertices

and TiE TIUTzU ... UTi-



Linear algebraic alternating path method

* B = spank Bi .

"

,
Bm][MIn

, F)
.
CeB

So = Rer(() #2
I
"unmatched vertices"



Linear algebraic alternating path method

* B = spank Bi .

"

,
Bm][MIn

, F)
.
CeB

->
"neighbors of So via unmatched edges

"

So =Rer(C)[#) Ti = B (So) : = span[Bi(So)U-- - UBm(So))e#



Linear algebraic alternating path method

* B = spank Bi .

"

,
Bm][MIn

, F)
.
CeB

So =Rer(C)[#) Ti = B (So) : = span[Bi(So)U-- - UBm(So))e#

- If Tikim(C) ,
can compute D-B of larger rank

- Otherwise... "Ti contains an unmatched rector"



Linear algebraic alternating path method

* B = spandBi . " , Bm][MIn , F)
.
CeB

So =Rer(C)[#) Ti = B (So) : = span[Bi(So)U.- - UBm(So))[(m(C)
C
- 1

--

5 = c" (Ti) : =Gre/C(u) -T , Y

P



Linear algebraic alternating path method

* B = spandBi . " , Bm][MIn , F)
.
CeB

So =Rer(C)[#) Ti = B (So) : = span[Bi(So)U.- - UBm(So))[(m(C)
C
- 1

--

5 = c" (Ti) : =Gre/C(u) -T , Y

8 T = B(Si)
- Check if T2 Pim(C) .

- Yes : cannot find D of larger rank in B

but do so in B&M(n , #) "
- No : continue



Linear algebraic alternating path method

* B = spandBi . " , Bm][MIn , F)
.
CeB

So =Per(C)[#) Ti = B (So) : = span[Bi(So)U-- - UBm(So))e#

E
5 = c" (Ti) : =Gre/C(u)eT , Y

8 T = B(Si)
: STOP if TiH = Ti < im(C(

Lemma
. [Ivanyos - Karpinski-Q-Santha] & has a shrunk subspace of gap corank(C)
iff i

,
Tix = Ti < im(((


