Tensors and Graphs II: questions and techniques

Training Workshop at Tensors: Algebra-Geometry-Applications

Youming Qiao University of Technology Sydney 30 May 2024

Last lecture

* Recipes of constructing tensors from graphs

* Three correspondences of structures

Matrices of linear forms: where graphs and tensors meet

Tensor Isomorphism in cryptography

- * Our current Internet security relies on factoring and discrete logarithm
- * If a quantum computer was built, they would not be secure (Shor's algorithm)
- * NIST started the "post-quantum cryptography competition" in 2017
	- * The most recent call for additional digital signature schemes
		- MEDS (meds-pqc.org): 3-tensor isomorphism
		- ALTEQ (pqcalteq.github.io): alternating trilinear form equivalence
		- LESS (less-project.com): code equivalence

* These problems resist current quantum algorithm techniques [Hallgren-Moore-Rotteler-Russell-Sen]

Today's lecture: questions and techniques

- * Graph Isomorphism: universality in testing isomorphism of combinatorial structures - Directed graph iso, hypergraph iso, line graphs, homeomorphism of 2-complexes…
- * Tensor Isomorphism: universality in testing isomorphism of algebraic structures?
	- Polynomial isomorphism, group isomorphism, algebra isomorphism…
- * Universality: either "containment" of orbit structures [Gelfand and Panomerav] or polynomial-time reductions

Comparing orbit structures of different actions

* Gelfand and Panomerav used the following to compare group actions

* Suppose G acts on S and H acts on T. The latter action contains the former, if there exists a map from S to T that preserves and respects orbits.

* Leads to the tame-wild dichotomy in the representation theory of Drozd.

From group isomorphism to bilinear map isometry

* Group Isomorphism: p-groups of class 2 and exponent p via Baer's correspondence

* Skew-symmetric bilinear map isometry: U, V: fin-dim vector spaces over \mathbb{F}_p
Input : Bilinear maps f, g · U × U → V Output: $True$ if \exists $A \in GL(U)$, $B \in GL(V)$, s . +. $\forall u$. u' c U , $\int (A(u), A(u')) = B(g(u, u'))$ False otherwise

Bilinear map isometry

* Skew-symmetric bilinear map isometry: U, V : fin-dim vector spaces over F_p Input: Bilinear maps $f, \vartheta \cdot U \times U \rightarrow V$ $\overline{0}$ utput: True if \exists AE GLIU), BE GLIV), s.t. Vu.u'c U, f (A(u), A(u'))= B(g(u,u')) False otherwise

* Suppose $U \cong \operatorname{\mathsf{F}}_{\mathsf{P}}^n$, $V \cong \operatorname{\mathsf{F}}_{\mathsf{P}}^{\sf m}$ p isometry
netric bilinear map isometry: U,
near maps f , $\} \cdot U \times U \rightarrow V$
2 if \exists A \in GL(U), B \in GL(V), s
2 otherwise
 $x = U \cong \mathbb{F}_p^n$, $V \cong \mathbb{F}_p^m$
 $\uparrow \uparrow$ $\boldsymbol{\gamma}$ $\frac{1}{2}$ commercial vector spaces

. u'c U, $\frac{1}{2}$ (A(u), A(u)

8

4

6

Algebra isomorphism

* Algebra isomorphism problem: V: fin-dim vector space over $\overline{\mathbb{F}}$ Input : Bilinear maps f , ^g : vxV⁺ V Input: Bilinear maps J, J: V × V → V
Output: True if I A E GL(V), s.t. V v.v'E V. f(A(v), A(v')) = A(g(v,v')) False otherwise.

* Imposing conditions (alternating, associativity, Jacobi) give associative or Lie algebras

* Studied in theoretical computer science and computer algebra [Agrawal— Saxena, Saxena—Kayal, Grochow, Brooksbank—Wilson]

Algebra isomorphism

* Algebra isomorphism problem: $V:$ fin-dim vector space over F Input : Bilinear maps f , ^g : vxV⁺ V Input: Bilinear maps $f. \gamma: V \times V \rightarrow V$
Output: True if \exists A \in GL(V), s.t. $Vv. v' \in V$. $\int (A(v), A(v')) = A(g(v, v'))$ False otherwise.

* Computing with associative or Lie algebras [Rónyai, Ivanyos, de Graaf]

\n* Suppose
$$
V \cong \mathbb{F}^n
$$
. Represent f by its structure constants

Algebra isomorphism

* Algebra isomorphism problem: $V:$ fin-dim vector space over F Input : Bilinear maps f , ^g : vxV⁺ V Input: Bilinear maps $f. \gamma: V \times V \rightarrow V$
Output: True if \exists A E GL(V), s.t. $Vv. v' \in V$. $\int (A(v), A(v')) = A(g(v, v'))$ False otherwise.

* Computing with associative or Lie algebras [Rónyai, Ivanyos, de Graaf]

Cubic form equivalence

* Cubic form equivalence:

 $Input: Cubic forms f, 2 \in F[X_1, -1, 2n]$ <u>Input: Cubic forms J. g E H l x1, ..., xn J</u>
Output: True if 3 A = (Qij) EGL(n. F). f(x1, ..., xn) = $g(\sum_{i=1}^{n}a_{1i}\cdot x_{i},\dots,\sum_{i=1}^{n}a_{ni}x_{i})$ False otherwise

* Studied in multivariate cryptography [Patarin, Bouillaguet—Fouque—Véber, Beullens]

Cubic form equivalence

* Cubic form equivalence:

 $Input: cubic forms f, \beta \in F[X_1, ..., X_n]$ <u>Input:</u> Cubic forms J, g E H l x1, ..., xn J
Output: True if 3 A = (Qij) EGL(n. F). f(x1, ..., xn) = $g(\sum_{i=1}^{n}a_{1i}\cdot x_{i},\dots,\sum_{i=1}^{n}a_{ni}x_{i})$ Cubic lorms
True if 3 A = (ai
false otherwise.

Cubic form equivalence

* Cubic form equivalence:

Input: Cubic forms f,
$$
p \in \mathbb{F}[x_1, ..., x_n]
$$

Output : True if $\exists A = (a_{ij}) \in GL(n, \mathbb{F})$, $f(x_1, ..., x_n) = g(\sum_{i=1}^{n} a_{1i} \cdot x_i, ..., \sum_{i=1}^{n} a_{ni} x_i)$
false otherwise.

* Suppose char(#) #2 or 3. By examining symmetric trilinear forms

Relations between group/algebra/cubic form iso?

* Can we compare group/algebra/cubic form iso?

* Warm up: can we compare the following matrix problems?

Main result I

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q, Grochow-Q-Tang] The following actions on 3-way arrays are equivalent under containment: * Tensor isomorphism (UxVxW->F).

- * (Symmetric or skew-symmetric) bilinear map isomorphism (UxU->V).
- * (Symmetric or skew-symmetric) trilinear form isomorphism (UxUxU->F).

* (Lie or associative) algebra isomorphism (UxU->U).

Main result I

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q, Grochow-Q-Tang] The following actions on 3-way arrays are equivalent under containment: * Tensor isomorphism (UxVxW->F).

- * (Symmetric or skew-symmetric) bilinear map isomorphism (UxU->V).
- * (Symmetric or skew-symmetric) trilinear form isomorphism (UxUxU->F).
- * (Lie or associative) algebra isomorphism (UxU->U).

* The constructions are efficient, i.e. the dimension increase is only polynomial, and the procedures can be carried out by polynomial-time algorithms

* So classifying cubic forms and Lie algebras are "equally difficult".

- This is in contrast to the matrix case!

Main result II

* It is also natural to study k-way arrays, and to start with, consider U_1 , U_2 , ..., U_k vector spaces over F. GL(U1) x GL(U2) x ... x GL(Un) naturally acts on U, @ U2@ ... @ Uk

Theorem. [Grochow-Q] The 3-tensor action contains the k-tensor action for k>3.

Main result II

* It is also natural to study k-way arrays, and to start with, consider It is also
U<mark>,, U,</mark> -" , He Vector spaces over #. GL(U,) ^x GL(H2) ^x .. - xGL(Ur) naturally acts on $U_1 \otimes U_2 \otimes \cdots \otimes U_k$

Theorem. [Grochow-Q] The 3-tensor action contains the k-tensor action for k>3.

* 3-tensors are more difficult than 2-tensors (matrices)

* But when k>3, the orbit structures "do not become more difficult".

* Proof makes use of path algebras from representation theory.

Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

One example of the reductions
\n
$$
Goal
$$
 Given $f, \frac{a}{d}: U \times V \times W \rightarrow F$, construct $\hat{f}, \hat{g}: S \times S \rightarrow T$, skew-symmetric
\nsuch that $f \sim \hat{g}$ under GL(U)×GL(V)×GL(W) iff $\hat{f} \sim \hat{g}$ under GL(S)×GL(T)

From tensors to bilinear maps

Perfect matchings and non-zero determinant

 B ip graph $G = (En] \biguplus [n'], E]$, $|E| = 8$ \Rightarrow Matrix of linear forms $M_{G} = B_1 x_1 + ... + B_e x_e$, $B_i \in M(n, F)$

Obs. G has a perfect matching \Leftrightarrow Det $(M_{G}) \not\equiv O$

Hall's marriage theorem

$$
\frac{Bip \text{ graph } G = (\text{InJ}\,\forall \text{In} \text{I} \text{.)} \quad \text{IE} = P}{\Rightarrow \text{Matrix of linear forms } M_{G} = B_{1}x_{1} + \dots + B_{e}x_{e}, B_{i} \in M \text{C} \text{.)}}
$$

Obs. G has a perfect matching \Leftrightarrow Det $(M_{G}) \not\equiv O$

Thm . [Hall] ^G has ^a perfect matching E) ^G has no shrunk subset

Another correspondence between graph and matrix space structures Bip graph $G = (In] \forall [n'], E$), $|E| = e$ \Rightarrow Matrix of linear forms $M_{G} = B_1 x_1 + ... + B_e x_e$, $B_i \in M(n, F)$

Obs. G has a perfect matching \Leftrightarrow Det $(M_{G}) \not\equiv O$

 Thm . [Hall] G has a perfect matching \Leftrightarrow G has no shrunk subset

 $Prop.$ G has a shrunk subset \Leftrightarrow Mg has a shrunk subspace $N(5) \subseteq R$ is the SEL , 1S1 > INISII set $M_{G}(s) = span\left(\bigcup_{i=1}^{n} B_{i}(s)\right)$

set $M_{G}(s) = span\left(\bigcup_{i=1}^{n} B_{i}(s)\right)$ **້າ=**າ of neighbours of

A new question about matrices of linear forms Bip graph $G = (In] \forall [n'], E$), $|E| = e$ \Rightarrow Matrix of linear forms $M_{G} = B_1 x_1 + ... + B_k x_k$, $B_i \in M(n, F)$ $Prop.$ G has a shrunk subset \Leftrightarrow M_G has a shrunk subspace $N(S) \subseteq R$ is the SEL , 1S1 > INISII Forms $Ml_f = B_1 x_1 + ... + B_e x_e$, $B_i \in M(n, F)$

set $S \subseteq F^n$, dim $(S) > \text{dim}(M_{G}(S))$

set $M_{G}(S) = \text{span}(\bigcup_{i=1}^{e} B_i(S))$ $M_{G}(S)=span(\bigcup_{i} B_{i}(S))$ of neighbours of

Question. Decide if a general matrix of linear forms has a shrunk subspace.

* Invariant theory [King, Bürgin-Draisma, Derksen-Makam], non-commutative algebra [Cohn], analysis [Garg-Gurvits-Oliveira-Wigderson]…

Discrepancy when moving from graphs to tensors I

Discrepancy when moving from graphs to tensors I

- * Non-zero det: efficient randomised algorithm. Open: a deterministic efficient one.
- * Shrunk subspace: in P by [Garg-Gurvits-Oliveira-Wigderson], [Ivanyos-Q-Subrahmanyam], [Hadama-Hirai]
	- Useful in the Tensor Isomorphism algorithm by Xiaorui Sun

- * The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:
	- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
	- A "regularity lemma" for matrix space blow-ups (via division algebras)

- * The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:
	- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
- A "regularity lemma" for matrix space blow-ups (via division algebras)

$$
C_T = ([n] \cup [n'], E)
$$

$$
M = B_1 x_1 + \dots + B_\ell x_\ell
$$

$$
B_i \in M(n, F)
$$

$$
G = ([n] \cup [n'], E)
$$

F \subseteq E : a matching

$$
M = B_1 x_1 + \dots + B_\ell x_\ell
$$

B = a₁B₁ + ... + a_lBe
B_i $\in M(n, F)$

$$
G = ([n] \cup [n'], E)
$$

$$
F \subseteq E : a matching
$$

$$
S \subseteq [n] : unmatched left vertices
$$

$$
M = B_1 x_1 + \dots + B_\ell x_\ell
$$

$$
B = a_1 B_1 + \dots + a_\ell B_\ell
$$

$$
Ker(B)
$$

$$
G = ([n] \cup [n'], E)
$$

$$
F \subseteq E : a matching
$$

$$
S \subseteq [n] : unmatched left vertices
$$

$$
M = B_1 x_1 + \dots + B_\ell x_\ell
$$

$$
B = a_1 B_1 + \dots + a_\ell B_\ell
$$

$$
Ker(B)
$$

$$
G = ([n] \oplus [n'], E)
$$

$$
F \subseteq E : a matching
$$

$$
S \subseteq [n] : unmatched left vertices
$$
M = B_1 x_1 + \dots + B_\ell x_\ell
$$

$$
B = a_1 B_1 + \dots + a_\ell B_\ell
$$

$$
Ker(B)
$$
$$

$$
G = ([n] \cup [n'], E)
$$

$$
F \subseteq E : a matching
$$

$$
S \subseteq [n] : unmatched left vertices
$$

$$
M = B_1 x_1 + ... + B_\ell x_\ell
$$

$$
B = a_1 B_1 + ... + a_\ell B_\ell
$$

$$
Ker(B)
$$

* $M = B_1 x_1 + ... + B_r x_r$ $B = a_1 B_1 + ... + a_r B_r$

 $V_0 = \ker(B) \Rightarrow W_1 = M(V_0) \Rightarrow V_1 = B^{-1}(W_1) \Rightarrow W_2 = M(V_1) \Rightarrow ...$

* $M = B_1 x_1 + \cdots + B_r x_r$ $B = a_1 B_1 + \cdots + a_r B_r$

 $V_0 = \ker(B) \Rightarrow W_1 = M(V_0) \Rightarrow V_1 = B^{-1}(W_1) \Rightarrow W_2 = M(V_1) \Rightarrow ...$

* WI & W2 & W3 & .. & WK = WK+1 = ...

Lemma. $W_k \subseteq Im(B) \Leftrightarrow \exists$ a shrunk subspace U s.t. $dim(U) - dim(M(U)) = corank(B)$

- [Ivanyos-Karpinski - Q - Santha]

Summary

* Graph isomorphism to tensor isomorphism

- The question of equivalences between iso problems for algebraic structures
- Star gadget for graphs vs Identity matrix gadget for tensors

Summary

- * Graph isomorphism to tensor isomorphism
	- The question of equivalences between iso problems for algebraic structures
	- Star gadget for graphs vs Identity matrix gadget for tensors
- * Graph perfect matching to tensor non-zero det
	- The breakdown of Hall's marriage theorem, and the shrunk subspace question
	- Alternating path method and its linear algebraic counterpart

Summary

- * Graph isomorphism to tensor isomorphism
	- The question of equivalences between iso problems for algebraic structures
	- Star gadget for graphs vs Identity matrix gadget for tensors
- * Graph perfect matching to tensor non-zero det
	- The breakdown of Hall's marriage theorem, and the shrunk subspace question
	- Alternating path method and its linear algebraic counterpart

- * More structure correspondences?
- * More graph-theoretic type questions for tensors?
- * More linear algebraic counterparts of graph-theoretic techniques?
	- Keep in mind that new phenomena and complications are there for tensors :)

* The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:

- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
- A "regularity lemma" for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:

* $G = (LUR, E)$, $M \subseteq E$ is a given matching, $U = E \setminus M$: edges not in M

Review of alternating paths on bipartite graphs

$$
* G = (LUR, E)
$$
, $M \subseteq E$ is a given matching, $U = E\setminus M$: edges not in M

Review of alternating paths on bipartite graphs

$$
* G = (LUR, E)
$$
, $M \subseteq E$ is a given matching, $U = E\setminus M$: edges not in M

Review of alternating paths on bipartite graphs

$$
* G = (LUR, E), M \subseteq E is a given matching, U = E\setminus M : edges not in M
$$

$$
\ast
$$
 (B = span{B₁, ..., B_m} \subseteq M (n, F) \subset \in (B)

$$
\frac{S_{o}}{I} = \ker(C) \subseteq F^{n}
$$

"unmatched vertices"

\n
$$
\mathcal{B} = \text{span}\{B_1, \dots, B_m\} \subseteq M(n, F)
$$
\n $\qquad \mathcal{C} \in \mathcal{B}$ \n

\n\n $S_o = \text{ker}(C) \subseteq F^n \quad \text{B} \quad \text{Theighbors of } S_o \text{ via unmatched edges}^n$ \n

\n\n $S_o = \text{ker}(C) \subseteq F^n \quad \text{C} \quad \$

$$
\ast
$$
 (B = span{B₁, ..., B_m} \subseteq M(n, F). $C \in B$

$$
S_{o} = \ker(C) \subseteq F^{n} \implies T_{i} = B(S_{o}) := span \{B_{i}(S_{o}) \cup \cdots \cup B_{m}(S_{o}) \} \subseteq F^{n}
$$

-1 $f \top_{i} \notin im(C)$, com compute $D \in B$ of larger rank
- Otherwise ...

$$
\star
$$
 (B = span{B₁, ..., B_m} \subseteq M (n, F). $C \in B$

$$
S_0 = \ker(C) \subseteq F^n \quad \bigotimes_{C^{-1}} T_1 = \bigotimes (S_0) := \text{span} \{B_1(S_0) \cup \dots \cup B_m(S_n) \} \subseteq Im(C)
$$

$$
S_1 = C^{-1}(T_1) := \{ \cup \in F^n \mid C(\cup) \in T_1 \}
$$

 $\ddot{}$

$$
\star
$$
 (B = span{B₁, ..., B_m} \subseteq M(n, F). $C \in B$

$$
S_{0} = \ker(C) \subseteq F^{n} \implies T_{1} = B(S_{0}) := span{B_{1}(S_{0}) \cup \cdots \cup B_{m}(S_{v})} \subseteq Im(C)
$$
\n
$$
S_{1} = C^{1}(T_{1}) := \{v \in F^{n} | C(v) \in T_{1}\}
$$
\n
$$
T_{2} = B(S_{1})
$$
\n
$$
- Check \text{ if } T_{2} \neq im(C)
$$
\n
$$
- Yes : cannot find D of larger rank in B
$$
\nbut 'do so in B@M(n, F)"\n
$$
- No : continue
$$

$$
\ast
$$
 (B = span{B₁, ..., B_m} \subseteq M (n, F). $C \in B$

$$
S_{0} = \ker(C) \subseteq F^{n} \implies T_{1} = B(S_{0}) := span{B_{1}(S_{0}) \cup \cdots \cup B_{m}(S_{v})} \subseteq F^{n}
$$
\n
$$
S_{1} = C^{-1}(T_{1}) := \{v \in F^{n} | C(v) \in T_{1}\}
$$
\n
$$
\implies T_{2} = B(S_{1})
$$
\n
$$
\therefore \quad STOP \text{ if } T_{1+1} = T_{1} \subseteq im(C)
$$

Lemma. [Ivanyos-Karpinski-Q-Santha] B has a shrunk subspace of gap corank (C) iff $\exists i$, $T_{i+1} = T_i \subseteq im(C)$