Tensors and Graphs II: questions and techniques

Training Workshop at Tensors: Algebra-Geometry-Applications

Youming Qiao University of Technology Sydney 30 May 2024

Last lecture

* Recipes of constructing tensors from graphs

* Three correspondences of structures

Matrices of linear forms: where graphs and tensors meet

Tensor Isomorphism in cryptography

- * Our current Internet security relies on factoring and discrete logarithm
- * If a quantum computer was built, they would not be secure (Shor's algorithm)
- * NIST started the "post-quantum cryptography competition" in 2017
 - * The most recent call for additional digital signature schemes
 - MEDS (meds-pqc.org): 3-tensor isomorphism
 - ALTEQ (pqcalteq.github.io): alternating trilinear form equivalence
 - LESS (less-project.com): code equivalence

* These problems resist current quantum algorithm techniques [Hallgren-Moore-Rotteler-Russell-Sen]

Today's lecture: questions and techniques

- * Graph Isomorphism: universality in testing isomorphism of combinatorial structures
 Directed graph iso, hypergraph iso, line graphs, homeomorphism of
 2-complexes...
- * Tensor Isomorphism: universality in testing isomorphism of algebraic structures?
 - Polynomial isomorphism, group isomorphism, algebra isomorphism...
- * Universality: either "containment" of orbit structures [Gelfand and Panomerav] or polynomial-time reductions

Comparing orbit structures of different actions

* Gelfand and Panomerav used the following to compare group actions

* Suppose G acts on S and H acts on T. The latter action contains the former, if there exists a map from S to T that preserves and respects orbits.

* Leads to the tame-wild dichotomy in the representation theory of Drozd.

From group isomorphism to bilinear map isometry

* Group Isomorphism: p-groups of class 2 and exponent p via Baer's correspondence

 * Skew-symmetric bilinear map isometry: U, V: fin-dim vector spaces over Fp Input: Bilinear maps f, J · U×U→V
 Output: True if ∃ A∈GL(U), B∈GL(V), s.t. ∀U, U'∈U, f(A(u), A(u'))=B(g(u,u')) False otherwise

Bilinear map isometry

* Skew-symmetric bilinear map isometry: U, V: fin-dim vector spaces over FFp
 Input: Bilinear maps f, J · U×U→V
 Output: True if ∃ A∈GL(U), B∈GL(V), s.t. ∀U, U'∈U, f(A(u), A(u'))=B(g(u,u'))
 False otherwise

* Suppose $U \cong \#_p^n$, $V \cong \#_p^m$ A n F - n G

Algebra isomorphism

* Algebra isomorphism problem: V: fin-dim vector space over F
Input: Bilinear maps f,g: V×V→V
Output: True if ∃ A ∈ GL(V), s.t. ∀v.v'∈V. f(A(v), A(v')) = A(g(v, v'))
False otherwise.

* Imposing conditions (alternating, associativity, Jacobi) give associative or Lie algebras

* Studied in theoretical computer science and computer algebra [Agrawal— Saxena, Saxena—Kayal, Grochow, Brooksbank—Wilson]

Algebra isomorphism

* Algebra isomorphism problem: V: fin-dim vector space over IF
Input: Bilinear maps f,g: V×V→V
Output: True if ∃ A ∈ GL(V), s.t. ∀v.v'∈V. f(A(v), A(v')) = A(g(v, v'))
False otherwise.

* Computing with associative or Lie algebras [Rónyai, Ivanyos, de Graaf]

Algebra isomorphism

* Algebra isomorphism problem: V: fin-dim vector space over IF
 Input: Bilinear maps f,g: V×V→V
 Output: True if ∃ A ∈ GL(V), s.t. ∀v.v'∈V. f(A(v), A(v')) = A(g(v, v'))
 False otherwise.

* Computing with associative or Lie algebras [Rónyai, Ivanyos, de Graaf]

Cubic form equivalence

* Cubic form equivalence:

Input: Cubic forms $f, f \in \mathbb{F}[X_1, \dots, X_n]$ Output: True if $\exists A = (a_{ij}) \in \mathbb{GL}(n, \mathbb{F}), f(X_1, \dots, X_n) = g(\sum_{i=1}^n a_{ii} \cdot X_i, \dots, \sum_{i=1}^n a_{ni} \cdot X_i)$ False otherwise

* Studied in multivariate cryptography [Patarin, Bouillaguet—Fouque—Véber, Beullens]

Cubic form equivalence

* Cubic form equivalence:

Input: cubic forms $f, f \in \mathbb{F}[X_1, ..., X_n]$ Output: True if $\exists A = (Q_{ij}) \in \mathbb{GL}(n, \mathbb{F}), f(X_1, ..., X_n) = g(\sum_{i=1}^n Q_{ii} \cdot X_i, ..., \sum_{i=1}^n Q_{ni} \cdot X_i)$ false otherwise.

* Suppose char (F)
$$\neq 2$$
 or 3. $f: \mathbb{F}^n \rightarrow \mathbb{F}$.
Let $\hat{f}(u,v,w) = f(u+v+w) - f(u+v) - f(u+w) - f(v+w) + f(u) + f(v) + f(w)$
 $\hat{f}: \mathbb{F}^n \times \mathbb{F}^n \rightarrow \mathbb{F}$ is a symmetric trilinear form

Cubic form equivalence

* Cubic form equivalence:

Input: cubic forms $f, f \in \mathbb{F}[X_1, ..., X_n]$ Output: True if $\exists A = (a_{ij}) \in GL(n, \mathbb{F}), f(X_1, ..., X_n) = g(\sum_{i=1}^n a_{ii} \cdot X_i, ..., \sum_{i=1}^n a_{ni} \cdot X_i)$ false otherwise.

* Suppose char (F) = 2 or 3. By examining symmetric trilinear forms

Relations between group/algebra/cubic form iso?

* Can we compare group/algebra/cubic form iso?

* Warm up: can we compare the following matrix problems?

* Matrix equivalence:	 Suppose dim(U)=dim(V)=n, over alg. closed fields
f,g:U→V	
	– Matrix equivalence: n+1 orbits (by ranks)
* Matrix conjugacy:	– Matrix conjugacy: infinitely many orbits (by Jordan n.f.)
f,g : U → U	
	- Matrix conjugacy is more complicated than equivalence

Main result I

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q, Grochow-Q-Tang] The following actions on 3-way arrays are equivalent under containment:

- * Tensor isomorphism (UxVxW->F).
- * (Symmetric or skew-symmetric) bilinear map isomorphism (UxU->V).
- * (Symmetric or skew-symmetric) trilinear form isomorphism (UxUxU->F).
- * (Lie or associative) algebra isomorphism (UxU->U).

Main result I

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q, Grochow-Q-Tang] The following actions on 3-way arrays are equivalent under containment: * Tensor isomorphism (UxVxW->F).

- * (Symmetric or skew-symmetric) bilinear map isomorphism (UxU->V).
- * (Symmetric or skew-symmetric) trilinear form isomorphism (UxUxU->F).
- * (Lie or associative) algebra isomorphism (UxU->U).

* The constructions are efficient, i.e. the dimension increase is only polynomial, and the procedures can be carried out by polynomial-time algorithms

* So classifying cubic forms and Lie algebras are "equally difficult".

- This is in contrast to the matrix case!

Main result II

* It is also natural to study k-way arrays, and to start with, consider U_1 , U_2 , ..., U_k vector spaces over \mathbb{F} , $GL(U_1) \times GL(U_2) \times ... \times GL(U_k)$ naturally acts on $U_1 \otimes U_2 \otimes ... \otimes U_k$

Theorem. [Grochow-Q] The 3-tensor action contains the k-tensor action for k>3.

Main result II

* It is also natural to study k-way arrays, and to start with, consider U_1 , U_2 , ..., U_k vector spaces over \mathbb{F} , $GL(U_1) \times GL(U_2) \times \cdots \times GL(U_k)$ naturally acts on $U_1 \otimes U_2 \otimes \cdots \otimes U_k$

Theorem. [Grochow-Q] The 3-tensor action contains the k-tensor action for k>3.

* 3-tensors are more difficult than 2-tensors (matrices)

* But when k>3, the orbit structures "do not become more difficult".

* Proof makes use of path algebras from representation theory.

Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

One example of the reductions

Goal. Given
$$f, g: U \times V \times W \rightarrow FF$$
, construct $\hat{f}, \hat{g}: S \times S \rightarrow T$, skew-symmetric
such that $f \sim g$ under $GL(U) \times GL(V) \times GL(W)$ iff $\hat{f} \sim \hat{g}$ under $GL(S) \times GL(T)$

From tensors to bilinear maps

From tensors to bilinear maps

Perfect matchings and non-zero determinant

Bip graph $G = ([n] \forall [n'], E), IE| = \ell$ \Rightarrow Matrix of linear forms $M_G = B_1 x_1 + \dots + B_e x_e, B_j \in M(n, F)$

Obs. G has a perfect matching \Leftrightarrow Det $(M_{G}) \equiv O$

Hall's marriage theorem

Bip graph
$$G = (En] \forall En'], E), IE|= e$$

 \Rightarrow Matrix of linear forms $M_G = B_1 x_1 + \dots + B_e x_e, B_j \in M(n, F)$

Obs. G has a perfect matching \Leftrightarrow Det $(M_{G}) \neq O$

Thm. [Hall] G has a perfect matching (=> G has no shrunk subset

Another correspondence between graph and matrix space structures Bip graph G_T = ([n] ⊎[n'], E), IEI = { ⇒ Matrix of linear forms M_G = B₁ x₁ + ...+ B_e x_e, B_j ∈ M(n, FF)

Obs. G has a perfect matching $\langle \rangle$ Det $(M_{G}) \equiv O$

Thm. [Hall] G has a perfect matching (=> G has no shrunk subset

Prop. (f has a shrunk subset (=) M_{f} has a shrunk subspace $S \subseteq L$, |S| > |N(S)| $S \subseteq \mathbb{F}^{n}$, dim $(S) > dim(M_{f}(S))$ $N(S) \subseteq R$ is the set $M_{f}(S) = span(\bigcup B_{i}(S))$ σf neighbours of S

A new question about matrices of linear forms Bip graph $G = ([n] \oplus [n'], E), |E| = 1$ \Rightarrow Matrix of linear forms $M_G = B_1 x_1 + \dots + B_e x_e$, $B_j \in M(n, \mathbb{F})$ Prop. (Thas a shrunk subset (=> MG has a shrunk subspace $S \subseteq H^n$, dim(S) > dim(M_G(S)) $S \subseteq L$, |S| > |N(S)| $M_{G}(S) = span(\bigcup B_{i}(S))$ $N(S) \subseteq R$ is the set of neighbours of S

Question. Decide if a general matrix of linear forms has a shrunk subspace.

* Invariant theory [King, Bürgin-Draisma, Derksen-Makam], non-commutative algebra [Cohn], analysis [Garg-Gurvits-Oliveira-Wigderson]...

Discrepancy when moving from graphs to tensors I

Discrepancy when moving from graphs to tensors I

- * Non-zero det: efficient randomised algorithm. Open: a deterministic efficient one.
- * Shrunk subspace: in P by [Garg–Gurvits–Oliveira–Wigderson], [Ivanyos–Q– Subrahmanyam], [Hadama–Hirai]
 - Useful in the Tensor Isomorphism algorithm by Xiaorui Sun

Linear algebraic alternating path method

- * The Ivanyos–Q–Subrahmanyam algorithm for deciding shrunk subspaces:
 - A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
 - A "regularity lemma" for matrix space blow-ups (via division algebras)

Linear algebraic alternating path method

- * The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:
 - A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
 - A "regularity lemma" for matrix space blow-ups (via division algebras)

Alternating path method: from graphs to tensors

$$\begin{pmatrix} T = ([n] \forall [n'], \bar{E}) \\ M = B_1 x_1 + \dots + B_{\ell} x_{\ell} \\ B_j \in M(n, \mathbb{F}) \end{cases}$$

Alternating path method: from graphs to tensors

Alternating path method: from graphs to tensors

Alternating path method: from graphs to tensors

TS[n']: matched
right vertices
•
îm(B)

Alternating path method: from graphs to tensors

$T \subseteq [n']$: matched	A walk from left to right	
right vertices	via unmatched edges	
im(B)	V⊆Æ"→M(v)	
	$V \subseteq \mathbb{F}^{n} \to \mathcal{M}(v)$ = span ($\bigcup_{i=1}^{e} B_{i}(v)$)	

Alternating path method: from graphs to tensors

T⊆[n']: matched	A walk from left to right	A walk from right to
right vertices	via unmatched edges	left via matched edges
îm(B)	$V \subseteq \mathbb{F}^{n} \to \mathcal{M}(v)$ = span ($\bigcup_{i=1}^{v} B_{i}(v)$)	$W \subseteq \operatorname{F}^{n} \to \operatorname{B}^{-1}(W)$ $= \{ v \in V \mid B(v) \in W \}$

* $M = B_1 x_1 + \dots + B_e x_e$ $B = a_1 B_1 + \dots + a_e B_e$

 $V_{0} = \ker(B) \Rightarrow W_{1} = M(V_{0}) \Rightarrow V_{1} = B^{-1}(W_{1}) \Rightarrow W_{2} = M(V_{1}) \Rightarrow \cdots$

* $M = B_1 x_1 + \dots + B_e x_e$ $B = a_1 B_1 + \dots + a_e B_e$

 $V_{0} = \ker(B) \Rightarrow W_{1} = M(V_{0}) \Rightarrow V_{1} = B^{-1}(W_{1}) \Rightarrow W_{2} = M(V_{1}) \Rightarrow \cdots$

* $W_1 \subsetneq W_2 \subsetneq W_3 \subsetneq \cdots \subsetneq W_k = W_{k+1} = \cdots$

Lemma. $W_{k} \subseteq I_{m}(B) \iff \exists a \text{ shrunk subspace } U \text{ s.t.}$ dim(U) - dim(M(U)) = corank(B)

- [lvanyos-Karpinski-Q-Santha]

Summary

* Graph isomorphism to tensor isomorphism

- The question of equivalences between iso problems for algebraic structures
- Star gadget for graphs vs Identity matrix gadget for tensors

Summary

- * Graph isomorphism to tensor isomorphism
 - The question of equivalences between iso problems for algebraic structures
 - Star gadget for graphs vs Identity matrix gadget for tensors
- * Graph perfect matching to tensor non-zero det
 - The breakdown of Hall's marriage theorem, and the shrunk subspace question
 - Alternating path method and its linear algebraic counterpart

Summary

- * Graph isomorphism to tensor isomorphism
 - The question of equivalences between iso problems for algebraic structures
 - Star gadget for graphs vs Identity matrix gadget for tensors
- * Graph perfect matching to tensor non-zero det
 - The breakdown of Hall's marriage theorem, and the shrunk subspace question
 - Alternating path method and its linear algebraic counterpart

- * More structure correspondences?
- * More graph-theoretic type questions for tensors?
- * More linear algebraic counterparts of graph-theoretic techniques?
 - Keep in mind that new phenomena and complications are there for tensors :)

Thank you!

And questions please :)

* The Ivanyos-Q-Subrahmanyam algorithm for deciding shrunk subspaces:

- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]
- A "regularity lemma" for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:

Review of alternating paths on bipartite graphs

So
$$\subseteq$$
 L : unmatched vertices $\bigvee_{T_1} \subseteq R$: neighbours of So via unmatched edges
Si \subseteq L : n.b. of T₁ via matched \swarrow_{edges}

Review of alternating paths on bipartite graphs

Review of alternating paths on bipartite graphs

*
$$\mathcal{B} = \operatorname{span}\{B_1, \dots, B_m\} \subseteq \mathcal{M}(n, \mathbb{F})$$
. $\mathcal{C} \in \mathcal{B}$

$$S_o = \ker(C) \subseteq \mathbb{F}^n$$

"unmatched vertices"

*
$$\mathcal{B} = span \{B_1, \dots, B_m\} \subseteq \mathcal{M}(n, \mathbb{F})$$
. $C \in \mathcal{B}$
"neighbors of So via unmatched edges"
 $S_0 = ker(C) \subseteq \mathbb{F}^n \xrightarrow{\mathcal{B}} T_1 = \mathcal{B}(S_0) := span \{B_1(S_0) \cup \dots \cup B_m(S_n)\} \subseteq \mathbb{F}^n$

*
$$(B = span \{ B_1, \dots, B_m \} \subseteq M(n, F))$$
. $C \in B$

$$S_{o} = \ker(C) \subseteq \mathbb{F}^{n} \xrightarrow{\mathcal{B}} T_{i} = \mathcal{B}(S_{o}) := \operatorname{span} \{B_{i}(S_{o}) \cup \cdots \cup B_{m}(S_{o})\} \subseteq \mathbb{F}^{n}$$

$$- \operatorname{If} T_{i} \notin \operatorname{im}(C), \operatorname{can} \operatorname{compute} D \in \mathcal{B} \text{ of larger rank}$$

$$- \operatorname{Otherwise} \cdots \qquad \forall "T_{i} \operatorname{contains} an unmatched vector"$$

*
$$(B = span \{ B_1, \dots, B_m \} \subseteq M(n, \mathbb{F}))$$
. $C \in (B)$

$$S_{0} = \ker(C) \subseteq \mathbb{F}^{n} \xrightarrow{B} T_{1} = B(S_{0}) := \operatorname{span} \{B_{1}(S_{0}) \cup \cdots \cup B_{m}(S_{n})\} \subseteq \operatorname{Im}(C)$$

$$S_{1} = C^{-1}(T_{1}) := \{ \cup \in \mathbb{F}^{n} \mid C(\cup) \in T_{1} \}$$

•

*
$$(B = span \{ B_1, \dots, B_m \} \subseteq M(n, \mathbb{F}))$$
. $C \in (B)$

$$S_{o} = \ker(C) \subseteq \mathbb{F}^{n} \xrightarrow{B} T_{i} = B(S_{o}) := \operatorname{span} \{B_{i}(S_{o}) \cup \cdots \cup B_{m}(S_{o})\} \subseteq \operatorname{Im}(C)$$

$$S_{i} = C^{-1}(T_{i}) := \{ \cup \in \mathbb{F}^{n} \mid C(\cup) \in T_{i} \}$$

$$T_{2} = B(S_{i})$$

$$- \operatorname{Check} if T_{2} \notin \operatorname{im}(C).$$

$$- \operatorname{Yes} : \operatorname{cannot} \operatorname{find} D \text{ of larger rank in } B$$

$$\operatorname{but}^{n} \operatorname{clo} \operatorname{sp} \operatorname{in} (B \otimes M(n, \mathbb{F})^{n})$$

$$- \operatorname{No} : \operatorname{continue}$$

*
$$(B = span (B_1, \dots, B_m) \subseteq M(n, \mathbb{F}))$$
. $C \in (B_1)$

$$S_{0} = \ker(C) \subseteq \mathbb{F}^{n} \qquad T_{1} = \mathscr{B}(S_{0}) := \operatorname{span} \{B_{1}(S_{0}) \cup \cdots \cup B_{m}(S_{0})\} \subseteq \mathbb{F}^{n}$$

$$C_{-}^{-1}$$

$$S_{1} = C^{-1}(T_{1}) := \{ \forall \in \mathbb{F}^{n} \mid C(\forall) \in T_{1} \}$$

$$T_{2} = \mathscr{B}(S_{1})$$

$$S_{1} = T_{1} \subseteq \operatorname{im}(C)$$

Lemma [Ivanyos-Karpinski-Q-Santha] B has a shrunk subspace of gap corank (C) iff $\exists i$, $T_{i+1} = T_i \subseteq im(C)$