Tensors and Graphs I: structures

Training Workshop at Tensors: Algebra-Geometry-Applications

Youming Qiao Youming.Qiao@uts.edu.au University of Technology Sydney 29 May 2025

Some opening lines

* This is Youming dialling in from Sydney, Australia

* Thanks go to the organisers and you for this opportunity!

* We will explore some interesting connections between tensors and graphs

* Two lectures: first one about structures, second one about techniques

* Some of the materials will be useful for tensor isomorphism :) - Watch out for Xiaorui's talk next week.

Tensors and graphs: an unexpected match?

and tensors meet
$\begin{array}{c} \bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \\ \bullet \bullet \\ \bullet \\ $
$5 X_1 + 3 X_3 \qquad X_2 - \frac{1}{2} X_3$

Matrices of linear forms: where graphs and tensors meet

From graphs to tensors: the formal recipe * [n].= { 1, 2, ..., n } $[m'] := \{1', 2', \dots, m'\}$ $X := \{ \chi_{11}, \chi_{12}, \dots, \chi_{nm} \}$ * G = ([n] [[m'], E): bipartite graph $E \subseteq [n] \times [m']$

From graphs to tensors: the formal recipe * [n].= { 1, 2, ..., n } $X := \{ \chi_{ij} \mid l \leq i < j \leq n \}$ $\Rightarrow \frac{1}{2} \begin{bmatrix} 0 & X_{11} & X_{12} \\ -X_{11} & 0 & X_{13} \\ 3 & -X_{12} & -X_{13} & 0 \end{bmatrix}$ * G = ([n], E): simple undivected graph. $E \subseteq {\binom{[n]}{2}}$ the set of subsets of size? $i \quad j \quad of \quad En \quad if \quad ii \quad j \in E$ * $M_{G} = i$ = } - Xij if (i.j) E

Graph structures versus tensor structures

* We've transformed graphs to tensors. But why bother to do that?

* Let's go back to ask Tutte and Lovász :)

Graph structures versus tensor structures

* We've transformed graphs to tensors. But why bother to do that?

* Let's go back to ask Tutte and Lovász :)

Graph structures versus tensor structures

* We've transformed graphs to tensors. But why bother to do that?

* Let's go back to ask Tutte and Lovász :)

*
$$[n] = \{1, 2, \dots, n\}$$

X := $\{\chi_{11}, \chi_{12}, \dots, \chi_{nn}\}$
* $G = ([n] \oplus [n'], E)$: bipartite
graph $E \subseteq [n] \times [n']$
 \downarrow^{j}
* $M_G = \begin{bmatrix} 0 \\ 1 \\ \chi_{11} \\ \chi_{12} \\ \chi_{21} \\ \chi_{21}$

*
$$[n] = \{1, 2, \dots, n\}$$

X := $\{\chi_{11}, \chi_{12}, \dots, \chi_{nn}\}$
* $G = ([n] \downarrow [n'], E)$: bipartite
graph $E \subseteq [n] \times [n']$
* $M_G = \begin{bmatrix} 0 \\ 1 \\ \chi_{11} \\ \chi_{12} \\ \chi_{21} \\ \chi_{21}$

An algebraic algorithm for bipartite graph perfect matching Obs. G has a perfect matching $*[n] = \{1, 2, \dots, n\}$ ⇐ det(MG) is not the zero poly. $X := \{ \chi_{11}, \chi_{12}, \dots, \chi_{nn} \}$ Q. How to test if det $(M_{\rm G}) \equiv 0$? A. Randomly substitute each χ_{ij} * G = ([n] U[n'], E): bipartite graph $E \subseteq [n] \times [n']$ with aije[2n] 2) Compute the determinant of the resulting $* M_{G} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{n \times n}$ matrix := AG. $\int \int n \times n$ = $\begin{cases} \chi_{ij} \quad \text{if } (i,j') \in E \\ 0 \quad 0/\omega \end{cases}$ Lemma. [Schwartz-Zippel] If det (MG) = 0, $\Pr \left[det(A_G) \neq 0 \right] \geq \frac{1}{2}$ QijEr[2n]

An algebraic algorithm for general graph perfect matching

*
$$[n] = \{1, 2, \dots, n\}$$

 $X := \{X_{ij} \mid 1 \le i < j \le n\}$
* $(T = ([n], E) : simple undivected)$
graph. $E \subseteq {\binom{[n]}{2}}$
 $M_{ij} = i \int_{j}^{i} \int_{0}^{j} \int_{n \times n}^{i} f\{i,j\} \in E$
 $= \begin{cases} -X_{ij} \quad if \quad \{i, j\} \in E \\ 0 \quad 0/\omega \end{cases}$
 $(i = 1) \int_{n \times n}^{i} f\{i, j\} \in E$
 $= \begin{cases} -X_{ij} \quad if \quad \{i, j\} \in E \\ 0 \quad 0/\omega \end{cases}$

From randomised to deterministic?

- * We've seen a randomised efficient algorithm for graph perfect matching
 - 1. Build a matrix of linear forms
 - 2. Substitute variables with random values
 - 3. Compute the determinant
- * Matrices of linear forms from graphs are special
 - 1. Bipartite: each variable appears in (at most) one position;
 - 2. Undirected simple: each variable appears in (at most) two positions.
- * What about testing if Det(general matrices of linear forms)=0?
 - 1. The same random algorithm still applies
 - 2. Can one devise a deterministic efficient algorithm for this?

From randomised to deterministic?

* We've seen a randomised efficient algorithm for graph perfect matching

* Matrices of linear forms from graphs are special

* What about testing if Det(general matrices of linear forms)=0?

Theorem. [Edmonds] There exist deterministic efficient algorithms for graph perfect matching.

Theorem. [Kabanets-Impagliazzo] A deterministic efficient algorithm for testing Det(general matrices of linear forms)=0 implies that "alg-P neq alg-NP".

- The hardness versus randomness principle [Yao, Nisan-Wigderson]

More correspondences between graphs and tensors

* A recipe from graphs to matrices of linear forms (and therefore tensors)

* A correspondence between perfect matchings and non-zero determinants

- * Two more correspondences:
- 1. Graph isomorphism and tensor isomorphism
- 2. Independent sets and totally-isotropic spaces

More correspondences between graphs and tensors

* A recipe from graphs to matrices of linear forms (and therefore tensors)

* A correspondence between perfect matchings and non-zero determinants

- * Two more correspondences:
- 1. Graph isomorphism and tensor isomorphism

2. Independent sets and totally-isotropic spaces

More correspondences between graphs and tensors

* A recipe from graphs to matrices of linear forms (and therefore tensors)

* A correspondence between perfect matchings and non-zero determinants

* Two more correspondences:

- 1. Graph isomorphism and tensor isomorphism
- 2. Independent sets and totally-isotropic (TI) spaces

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

Definition. Let
$$\overline{A} = (A_1, \dots, A_n)$$
, $\overline{B} = (B_1, \dots, B_n)$, $A_i, B_j : n \times n$ matrices over \overline{H} .
Decide if $\exists n \times n$ invertible matrices $L, R, T = (t_{ij})$, s.t.
 $\forall i \in [n], A_i = \sum_{j=1}^n t_{ij} \lfloor B_j R$

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

Bip graph
$$G \Rightarrow Matrix of linear forms M_G = 3 - tensor T_GBip graph $H \Rightarrow Matrix of linear forms M_H = 3 - tensor T_H$$$

* Graph Isomorphism: Given two graphs, decide if they are the same up to relabelling the vertices

Bip graph
$$G \Rightarrow Matrix of linear forms M_G = 3 - tensor T_G$$

Bip graph $H \Rightarrow Matrix of linear forms M_H = 3 - tensor T_H$
Proposition. $G \cong H$ if and only if $T_G \cong T_H$
 $- [L_i - Q - Wigderson - Wigderson - Zhang]$

Proposition. $G \cong H$ if and only if $T_G \cong T_H$ Proof. Suppose $G = ([n] \cup [m'], E)$ $H = ([n] \cup [m'], F)$ $E, F \subseteq [n] \times [m']$. $|E| = |F| = \ell$ Suppose $M_G = A_1 \times_1 + \dots + A_\ell \times_\ell$ $M_H = B_1 \times_1 + \dots + B_\ell \times_\ell$, $A_i, B_j : n \times m$, elementary matrices Let $S_G = \text{span} \{A_1, \dots, A_\ell\} \leq M(n \times m, fF)$ $S_H = \text{span} \{B_1, \dots, B_\ell\} \leq M(n \times m, fF)$

Proposition. $G \cong H$ if and only if $T_G \cong T_H$ Proof. Suppose $G = ([n] \cup [m'], E)$ $H = ([n] \cup [m'], F) \quad E, F \subseteq [n] \times [m']$. $|E| = |F| = \ell$ Suppose $M_G = A_1 x_1 + \dots + A_\ell x_\ell$ $M_H = B_1 x_1 + \dots + B_\ell x_\ell$, $A_i, B_j : n \times m$, elementary matrices Let $S_G = span \{A_1, \dots, A_\ell\} \leq M(n \times m, ff)$ $S_H = span \{B_1, \dots, B_\ell\} \leq M(n \times m, ff)$

 $G \cong H : \exists \pi \in S_n, \tau \in S_m, s.t \in \underbrace{(\pi, \tau)}_{\mathsf{H}} F$ $T_G \cong T_H : \exists \mathsf{L} \in \mathsf{GL}(n, \mathbb{F}), \mathsf{R} \in \mathsf{GL}(m, \mathbb{F}), s.t. \mathsf{L} S_G \mathsf{R}^t = S_H.$ $\| \mathsf{L} \mathsf{A} \mathsf{R}^t | \mathsf{A} \in \mathsf{S}_G \}$

Proposition. $G \cong H$ if and only if $T_G \cong T_H$

* A reduction from graph iso to tensor iso

- Tensor iso cannot be too easy from the worst-case algorithm viewpoint

* The analogous result for general graphs (where we get skew-symmetric matrices of linear forms) also holds [He-Q]

* Borrowing techniques from graph iso to tensor iso?

- Such as individualisation and refinement, Weisfeiler-Leman...?

Independent sets and totally-isotropic spaces

* Independent sets: a	$ * \overline{A} = A_1 x_1 + \dots + A_m x_m$
subset of vertices with no	A; : n×n skew-sym matrix
edges connecting any two	· · · · · · · · · · · · · · · · · · ·
of them	Def $S \leq \mathbb{F}^n$ is a totally-Botropic space
	of \overline{A} , if $\forall u, v \in S$. $\forall i \in [m]$, $u^{\dagger}A_i v = 0$

Independent sets and totally-isotropic spaces

* Independent sets: a
subset of vertices with no
edges connecting any two
of them
$$\begin{array}{c} & & \overline{A} = A_1 x_1 + \dots + A_m x_m \\ A_i : n \times n \quad skew-sym \quad matrix \\ \hline A_i : n \times n \quad skew-sym \quad matrix \\ \hline Def \quad S \leq \mathbb{F}^n \text{ is a totally-isotropic space} \\ \hline of \ \overline{A}, \ if \ \forall u, v \in S, \ \forall i \in [m], \\ u^{t} A_i v = 0 \\ \hline \end{array}$$
General graph $G = \Rightarrow$ Skew-sym $matrix of linear forms M_G$

Proposition. Max size of independent sets in G = Max dim of TI spaces in M_{G}

* Recipes of constructing tensors from graphs

* Three correspondences of structures

More about these correspondences

* Some correspondences have group-theoretic interpretations

Graphs	Teniors	(Troups Scluss-2, Brahan	exp-p. p-groups
Perfect matching	Non-zero det	?	.
lsomorphism	somorphism	lsomorphism	
Independent sets	Totally-Botropic space	Abelian subgroups	

* Not just structures, but also questions and techniques (next lecture :))

Thank you!

And questions please :)