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Some opening lines

* This is Youming dialling in from Sydney, Australia

* Thanks go to the organisers and you for this opportunity!

* We will explore some interesting connections between tensors and graphs
* Two lectures: first one about structures, second one about techniques

* Some of the materials will be useful for tensor isomorphism :)
- Watch out for Xiaoruis talk next week.



Tensors and graphs: an unexpected match?

Tensors
7N
* Multi-way arrays * Objects and relations
* Hypermatrices * Combinatorics
* Multilinear algebra * Networks
* Determinantal varieties * Graph colouring
* Bilinear maps * Extremal and probabilistic questions




Matrices of linear forms: where graphs and tensors meet

* You've (probably) seen matrices of e.9.
linear forms
- One way to encode 3-tensors S+ 3%y %- ‘g_- X3
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Matrices of linear forms: where graphs and tensors meet

* You've (probably) seen matrices of
linear forms
- One way to encode 3-tensors

* From a graph, we can build
matrices of linear forms
- From Tutte and Lovasz

(1) : each variable appears
in (at most) one position;
(2) : each variable

appears in (at most) two positions.
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From graphs to tensors: the formal recipe
x[n)=1{1,2, . n)

(wml:i=901.2", ~ m]

X = f Yu, g, -, 9(V\m‘l

* G=(I[nWIm), E): bipartite
graph. E ¢[n]=xLm]
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From graphs to tensors: the formal recipe

#[n}=11, 2, . n)
X:=1%ij |Isi<jsn]

* (0= (tn] , E) i Simple wnel ivected
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Graph structures versus tensor structures

* We've transformed graphs to tensors. But why bother to do that?

* Let's go back to ask Tutte and Lovasz :)

|

: a set of disjoint edges




Graph structures versus tensor structures

* We've transformed graphs to tensors. But why bother to do that?

* Let's go back to ask Tutte and Lovasz :)

: a set of disjoint edges ~==

* Structural and algorithmic questions
about perfect and maximum matchings

- Tutte: how to characterise graphs
without perfect matchings?

- Lovasz: how to efficiently decide if a
graph has a perfect matching '?z




Graph structures versus tensor structures

* We've transformed graphs to tensors. But why bother to do that?

* Let's go back to ask Tutte and Lovasz :)

|

: a set of disjoint edges

* Structural and algorithmic questions
about perfect and maximum matchings

- Tutte: how to characterise graphs

* Turns out that the viewpoint without perfect matchings?
is helpful! - Lovasz: how to efficiently decide if a

graph has a perfect matching




An algebraic algorithm for bipartite graph perfect matching
*[n =11,2, . n
3= ) e
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An algebraic algorithm for bipartite graph perfect matching

$[n)=1{1,2, . n)

X = i 9(",’)(,2’ ct, ynn ‘]

* G=(I[nWIn), E): bipartite
graph. E ¢[n]=x[n']
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An algebraic algorithm for bipartite graph perfect matching

¥ LNnj=11\,2, . n
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An algebraic algorithm for bipartite graph perfect matching

* [n):=1{1,2,- n)
X = f 9(u.'xvz, -, Unn (l

* G=(I[nWIn), E): bipartite
graph. E ¢[n]=x[n']
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An algebraic algorithm for bipartite graph perfect matching
x [n)i=11,2, - n) Obs. G hon o perfect motching
der (Mg) is not the zexo Poly -
X t= 1 %, Mg, -+, Ynn |
(). How to test if oot (Mg) =0 ?
* G=([nJWIn'), E): bipamtite A.(‘)Ra,ndoml\a, substtitute each ¥ij
graph. E ¢[n]=x[n'] with @i e [2n].
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An algebraic algorithm for general graph perfect matching

s [n}=11, 2, . n)
X:=1%ij |Isi<jsn]
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From randomised to deterministic?

* We've seen a randomised efficient algorithm for graph perfect matching

1. Build a matrix of linear forms
2. Substitute variables with random values
3. Compute the determinant

* Matrices of linear forms from graphs are

1. Bipartite: each variable appears in (at most) one position;
2. Undirected simple: each variable appears in (at most) two positions.

* What about testing if Det(general matrices of linear forms)=0?

1. The same random algorithm still applies
2. Can one devise a deterministic efficient algorithm for this?



From randomised to deterministic?

* We've seen a randomised efficient algorithm for graph perfect matching

* Matrices of linear forms from graphs are

* What about testing if Det(general matrices of linear forms)=0?

Theorem. [Edmonds] There exist deterministic efficient algorithms for graph perfect
matching.

Theorem. [Kabanets-Impagliazzo] A deterministic efficient algorithm for testing
Det(general matrices of linear forms)=0 implies that “alg-P neq alg-NP”.

- The hardness versus randomness principle [Yao, Nisan-Wigderson]



More correspondences between graphs and tensors

* A recipe from to matrices of linear forms (and therefore tensors)

* A correspondence between and non-zero determinants

* Two more correspondences:
1.

and tensor isomorphism
2.

and totally-isotropic spaces



More correspondences between graphs and tensors

* A recipe from to matrices of linear forms (and therefore tensors)

* A correspondence between and non-zero determinants

* Two more correspondences:
1.

and tensor isomorphism
2.

and totally-isotropic spaces
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More correspondences between graphs and tensors

* A recipe from to matrices of linear forms (and therefore tensors)

* A correspondence between and non-zero determinants

* Two more correspondences:
1.

and tensor isomorphism
2.

and totally-isotropic (TI) spaces

Sp Tl spow
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Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to

relabelling the vertices

il
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Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to

relabelling the vertices
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Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to
basis changes of the three directions
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Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to
basis changes of the three directions
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Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to
basis changes of the three directions

Definition. Let A= (A, =, Ay), B= (B, = Ba), Ai, B i nxnmatican over TF
Decide if I nxn invertible madvicen R. T=(’tij), s.t.
n
Vieln). Aj= 2 tij . B;R
J=1



Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to
basis changes of the three directions

Bip. gmp\r\ = N\a‘\‘iixqjl{v\ewrfmms MCT = 3- tensor TCT

oo === (e ] 1))
P

471 1 2x2 x3 tensov
=
T

N

Ll
\




Graph isomorphism and tensor isomorphism
* Given two graphs, decide if they are the same up to

relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to
basis changes of the three directions

Bip. graph = Motixat linear forms Mg, = 3-tensor Tg

Bip. gﬂ’&Ph = N\a‘hixo‘jlinewrfvvms My = 3-tensor T4



Graph isomorphism and tensor isomorphism

* Given two graphs, decide if they are the same up to
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to
basis changes of the three directions

Bip. graph = Motixat linear forms Mg, = 3-tensor Tg
Bip. graph = Mahixo‘jl\'newrfmms My = 3-tensor T4
Proposition. it ond only b Teo Ty

- [ Li- Q- Wfﬂmcm-w?gmieﬂ‘ ka’“}]



Graph isomorphism and tensor isomorphism

Proposition.

Proof. Suppose g =(In]ULw], E)

Suppore

Let

it ond omly i Te = Ty

H= (0] Uulm].F) . IElI=IF|=¢

Mg = A% + -+ Ag e
Mu = Bx +--+RBeXxe , Aj. Bj: nxm, elementary matvias
Sg=spaniA, -, Ae) = M(nxm, F)
SH = spwn{&.,~~~, Be] & M (nxm, F)



Graph isomorphism and tensor isomorphism
Proposition. F and (mh& F TGr ~ Ty
Proof. Suppose g =(In]ULw], E)

H= (0] Uulm].F) . IElI=IF|=¢

Suppre Mg = A % + -+ AgYe
Mp=RBx + -+ReXxe . Aj. KJ' 2 Dxm, elementamny matvies

LQT Sc_{z SPQ.“{A[ > 7T, Al‘j s Mnxm, H:)
SH = spwn{&.,~~~, Be] < M (nxm, F)

Te=Th : A LeGLIn,F), ReGlLim, F). st. LSq R = Sy,
n
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Graph isomorphism and tensor isomorphism

Proposition. f ond cml% F TCT & Ty

* A reduction from graph iso to tensor iso

- Tensor iso cannot be foo easy from the worst-case algorithm viewpoint

* The analogous result for general graphs (where we get skew-symmetric
matrices of linear forms) also holds [He-Q]

* Borrowing techniques from graph iso to tensor iso?

- Such as individualisation and refinement, Weisfeiler-Leman...?



Independent sets and totally-isotropic spaces

* ‘a

subset of vertices with no
edges connecting any two
of them

* A-‘- A|'xl+“~+Am9(m

A; . NxnN shw-sxém madrix

Det S=<F is a ‘h;’rn\\%-rsaho]ﬁc spa
of A,if Yu,vel . Vielm),
u*Aiv=0



Independent sets and totally-isotropic spaces

* :a * A= Ay Xi+ -+ A Am

subset of vertices with no A; : nxn Skew-sym matyix
edges connecting any two

of them

Det S=F isa hotally-rotropic spaw
of A,if YuveS. Vielm],

u*A;v=0
Genexol gfap\r\ = Skew-wym mo«‘hixcj lineax forms Mg
Proposition. Max size of independent sets in & = Max dim of TI spaces in Mg

- [Bei- Chen- Gruan- Q- Sun ]



Summary

* Recipes of constructing tensors from graphs

* Three correspondences of structures

T%s ors
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More about these correspondences

* Some correspondences have group-theoretic interpretations

lamss -1 fexp-p. P-§Touwps
Tomors rroge? 20 o A
vohenk growps
Non-2exo ok ?
|§vma—r|7hisvv\ ls::mo-rfhism
To'\a\\\/ —Ro¥opiT space Abelion cubms

* Not just structures, but also questions and techniques (next lecture :))



And questions please :)



