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Some opening lines

* This is Youming dialling in from Sydney, Australia

* Thanks go to the organisers and you for this opportunity!

* We will explore some interesting connections between tensors and graphs

* Two lectures: first one about structures, second one about techniques

* Some of the materials will be useful for tensor isomorphism :)
  - Watch out for Xiaorui’s talk next week.



Tensors and graphs: an unexpected match?

Tensors Graphs

* Multi-way arrays
* Hypermatrices
* Multilinear algebra
* Determinantal varieties
* Bilinear maps
…

* Objects and relations
* Combinatorics
* Networks
* Graph colouring
* Extremal and probabilistic questions
…
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Matrices of linear forms: where graphs and tensors meet

* You’ve (probably) seen matrices of 
linear forms
  - One way to encode 3-tensors

e
. g. 3x, - 2x2 - Xi + Xz - Xa

5x2 + 3x3X2 - [X3



Matrices of linear forms: where graphs and tensors meet

* You’ve (probably) seen matrices of 
linear forms
  - One way to encode 3-tensors

* From a graph, we can build special 
matrices of linear forms
  - From Tutte and Lovász

(1) Bipartite: each variable appears 
in (at most) one position;
(2) Undirected simple: each variable 
appears in (at most) two positions.

e
. g. 3X1 - 2x2

- Xi + Xz - X3

5x2 + 3x3X2 - [X3
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From graphs to tensors: the formal recipe
* [n] : =11 ,

2, . . .

.
n)

[m] : = E 1 , 2, ...,m'

X : = &Xi1 , X12
,
·, Xnm)

* G = ([n][m] · El : bipartite
graph. E[[n) x [m'
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From graphs to tensors: the formal recipe
* [n] : =11 ,

2, . . .

.
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Graph structures versus tensor structures

* We’ve transformed graphs to tensors. But why bother to do that?

* Let’s go back to ask Tutte and Lovász :)

* Graph matching: a set of disjoint edges - -
O O --& ---
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Graph structures versus tensor structures

* We’ve transformed graphs to tensors. But why bother to do that?

* Let’s go back to ask Tutte and Lovász :)

* Graph matching: a set of disjoint edges

* Structural and algorithmic questions 
about perfect and maximum matchings

- Tutte: how to characterise graphs 
without perfect matchings?
- Lovász: how to efficiently decide if a 
graph has a perfect matching '?z

-· ·
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Graph structures versus tensor structures

* We’ve transformed graphs to tensors. But why bother to do that?

* Let’s go back to ask Tutte and Lovász :)

* Graph matching: a set of disjoint edges

* Structural and algorithmic questions 
about perfect and maximum matchings

- Tutte: how to characterise graphs 
without perfect matchings?
- Lovász: how to efficiently decide if a 
graph has a perfect matching

* Turns out that the tensor viewpoint 
is helpful!
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An algebraic algorithm for bipartite graph perfect matching
* [n] : =11 ,

2, . . .

.
n)
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.
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An algebraic algorithm for bipartite graph perfect matching
* [n] : =11 ,
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(1)j Pf
.

A p . m .
in G is &(6 , ji) , .. In , ju)]

* Mc =Eq) s.t . # : [n] + [n] ·
iT(i) = ji

nX N
is a permutation. = [xij]"

Each monomial in det(X) is of the

=
ij if lije form sqnitt). Xincl---Unitchs El



An algebraic algorithm for bipartite graph perfect matching
* [n] : =11 ,

2, . . .
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An algebraic algorithm for bipartite graph perfect matching
* [n] : =11 ,

2, . . .
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An algebraic algorithm for bipartite graph perfect matching
* [n] : =11 ,

2, . . .

.
n) Obs

.
Ghas a perfect matching
=) def(MG) is not the zero poly .

X : = &Xi1 . X12, , Ann (
Q

.
How to test if det (MG) = 0 ?

(1)

* G = ([n] (In'] · El : bipartite A
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An algebraic algorithm for general graph perfect matching
* [n] : =11 ,

2, . . .

.
n)
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X : = (Xij)(i < jz) J

O Xin Xiz1 =>
2 -X10 Xiz
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From randomised to deterministic?

* We’ve seen a randomised efficient algorithm for graph perfect matching
1. Build a matrix of linear forms
2. Substitute variables with random values
3. Compute the determinant

* Matrices of linear forms from graphs are special

1. Bipartite: each variable appears in (at most) one position;
2. Undirected simple: each variable appears in (at most) two positions.

* What about testing if Det(general matrices of linear forms)=0?

1. The same random algorithm still applies
2. Can one devise a deterministic efficient algorithm for this?



From randomised to deterministic?

* We’ve seen a randomised efficient algorithm for graph perfect matching

* Matrices of linear forms from graphs are special

* What about testing if Det(general matrices of linear forms)=0?

Theorem. [Edmonds] There exist deterministic efficient algorithms for graph perfect 
matching.

Theorem. [Kabanets-Impagliazzo] A deterministic efficient algorithm for testing 
Det(general matrices of linear forms)=0 implies that “alg-P neq alg-NP”.

- The hardness versus randomness principle [Yao, Nisan-Wigderson]



More correspondences between graphs and tensors

* A recipe from graphs to matrices of linear forms (and therefore tensors)

* A correspondence between perfect matchings and non-zero determinants 

* Two more correspondences: 
1. Graph isomorphism and tensor isomorphism
2. Independent sets and totally-isotropic spaces



More correspondences between graphs and tensors

* A recipe from graphs to matrices of linear forms (and therefore tensors)

* A correspondence between perfect matchings and non-zero determinants 

* Two more correspondences: 
1. Graph isomorphism and tensor isomorphism
2. Independent sets and totally-isotropic spaces

Graph Iso Ind Set

J NP-complete-
Perfect NP-intermediate

Matching 8

P



More correspondences between graphs and tensors

* A recipe from graphs to matrices of linear forms (and therefore tensors)

* A correspondence between perfect matchings and non-zero determinants 

* Two more correspondences: 
1. Graph isomorphism and tensor isomorphism
2. Independent sets and totally-isotropic (TI) spaces

Graph Iso

NP-complete
Ind Set pT/space

↑ Tensor Ko
J -

Perfect NP-intermediate

Matching 8

P
=Det Zero



Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

I
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Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices
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Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to 
basis changes of the three directions

-
-

A B



Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to 
basis changes of the three directions
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Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to 
basis changes of the three directions

Definition. Let = (Ai
, .... An) , B = /B,, " , Bn) , Ai , Bj : nxnmatrices over F.

Decide ifI uxn invertible matrices L ,
R

.
T= (tij) , S .t .

Vie[n] . Ai= tijLBjR



Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to 
basis changes of the three directions

Bip . graph G => Matrix of linear forms MG = 3-tensor TG

-2o Xi. = ([: ]
.

(o)
.

[i : ])-& 2
=
2xyD O

TF: 2x2x3 tensor



Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to 
basis changes of the three directions

Bip . graph G => Matrix of linear forms MG = 3-tensor TG

Bip . graph H => Matrix of linear forms MH = 3-tensor Th



Graph isomorphism and tensor isomorphism

* Graph Isomorphism: Given two graphs, decide if they are the same up to 
relabelling the vertices

* Tensor Isomorphism: Given two 3-tensors, decide if they are the same up to 
basis changes of the three directions

Proposition. 

Bip . graph G => Matrix of linear forms MG = 3-tensor TG

Bip . graph H => Matrix of linear forms MH = 3-tensor Th

GEH if and only if TGETH
- [Li-Q-Wigderson - Wigderion-Zhang]



Graph isomorphism and tensor isomorphism

Proposition. GEH if and only if TGETH

Proof. Suppose G = (in) WIm'] , El

H = (In]WIm'] · F) E , F2[n]x[m'] .
lEl = /Fl = e

Suppose MG = A , x, +.. - + Axe

MH = BiX , +...
+ Bexe , Ai

. Bj : nxm , elementary matrices

Let SG = Span9A ,,..., Aege Minxm ,
#)

SH = spandB , ,
. ... Be] < M(rxm, IF)



Graph isomorphism and tensor isomorphism

Proposition. GEH if and only if TGETH

Proof. Suppose G = (in) WIm'] , El

H = (In]WIm'] · F) E , F2[n]x[m'] .
lEl = /Fl = e

Suppose MG = A , x, +.. - + Axe

MH = BiX , +...
+ Bexe , Ai

. Bj : nxm , elementary matrices

Let SG = Span9A ,,..., Aege Minxm ,
#)

SH = spandB , ,
. ... Be] < M(rxm, IF)
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Graph isomorphism and tensor isomorphism

Proposition. 

* A reduction from graph iso to tensor iso

- Tensor iso cannot be too easy from the worst-case algorithm viewpoint

* The analogous result for general graphs (where we get skew-symmetric 
matrices of linear forms) also holds [He-Q]

* Borrowing techniques from graph iso to tensor iso?

- Such as individualisation and refinement, Weisfeiler-Leman…?

GEH if and only if TGETH



Independent sets and totally-isotropic spaces
* Independent sets: a 
subset of vertices with no 
edges connecting any two 
of them

* A = A , x1 + .. - + AmXm

Ai : nxn skew-sym matrix

Def
.

S = #V is a totally-potropic spaceI of E ,
if Fu , reS .

Vieim),

n
+ Aiv = 0



Independent sets and totally-isotropic spaces
* Independent sets: a 
subset of vertices with no 
edges connecting any two 
of them

Proposition. Max size of independent sets in G = Max dim of TI spaces in

* A = A , x1 + .. - + AmXm

Ai : nxn skew-sym matrix

I Def .

S = #V is a totally-potropic space
of E ,

if Fu , reS .
Vieim),

n
+ Aiv = 0

General graphG => Skew-sym matrix of linear forms MG

MG

- [Bei-Chen-Guan-Q-Sun)



Summary

* Recipes of constructing tensors from graphs

* Three correspondences of structures

Graphs Tensors

Perfect matching Non-zero det

Isomorphism Isomorphism

Independentrets Totally-Botropic space



More about these correspondences
* Some correspondences have group-theoretic interpretations

* Not just structures, but also questions and techniques (next lecture :))

Graphs Tensors Groups
-> class-2 , exp-p. p-groups
Brahana groups

Perfect matching Non-zero det ?

Isomorphism Isomorphism Isomorphism

Independentrets Totally-Botropic space Abelian subgroups



Thank you!

And questions please :) 


