
LINEAR METHODS FOR TENSORS

LECTURE #1 (CENTROIDS)

PETER BROOKSBANK

1. Overview & Objectives

We learned in previous lectures what it is that makes a tensor a tensor. We have
seen that, roughly speaking, the study of tensors is concerned with properties of
“n-way arrays” of numbers up to basis changes on the “axes” of the arrays. This
series of lectures is motivated, in part, by the desire to answer certain computational
questions about tensors:

(1) Is it possible to reveal, by a basis change, structure that exists in a given
tensor? For instance, can the entries be arranged into diagonal blocks

or perhaps into “steps” relative to some face of the tensor:

Date: May 29–31, 2024.

1

2 PETER BROOKSBANK

(2) Is it possible to decide, by a basis change, whether some tensor can be
transformed into another? (The so-called Tensor Isomorphism Problem.)

These lectures introduce linear invariants of tensors, namely invariants that can be
computed as solutions to systems of linear equations. We will focus on invariants
that are naturally equipped with some algebraic structure. We will show that
problems of the first type can be solved efficiently using algebraic properties of the
linear invariants. We will also lay some groundwork for the tensor isomorphism
problem and discuss some special cases, but this is a topic that will be discussed in
much more detail in the series of lectures by Joshua Maglione.

There are computer implementations of algorithms based on ideas and techniques
outlined in these notes. Throughout these notes I will provide illustrations of com-
putations that can be carried out on the Magma system [1] using supplementary
packages that are freely available as GitHub repositories at [2].

2. Notation

Following the notation established in the lectures by James Wilson and Elina
Rebeva, our main object of study will be a bimap (3-tensor)

∗ : U × V ↣ W, where U, V,W are abelian groups.

Recall that the symbol ↣ communicates that ∗ distributes over the addition in U
and V . The techniques developed in this series of lectures apply more generally to
n-tensors for any n ⩾ 3, but bimaps are general enough to adequately illustrate their
power. Confining our attention to bimaps will make the notation more transparent
and the applications easier to visualize.

2.1. Systems of forms. It is often convenient to appeal to matrices when com-
puting with, or reasoning about linear transformations (2-tensors). Let’s recall how
this works. Let T : U → V be a linear transformation of F-vector spaces, where
dimU = c and dimV = d. Fix ordered bases {u1, . . . , uc} and {v1, . . . , vd} for U
and V , respectively. Now associate to T the c×d matrix M whose ith row consists
of the coordinates of the vector T (ui) written relative to {v1, . . . , vd}.

We saw in earlier lectures that higher-valence tensors may be similarly repre-
sented as grids (multiway arrays) of scalars. In the case of bimaps, though, we
often prefer the visual convenience of ‘flattening’ to a system of forms. Given
∗ : U × V ↣ W , fix ordered bases {u1, . . . , uc}, {v1, . . . , vd} and {w1, . . . , we} for
U, V and W , respectively. Now form the list [M1, . . . ,Me] of c× d matrices, where
the (i, j)th entry of Mk is αijk, where ui ∗ vj = αij1w1 + . . .+ αijewe.

If [M1, . . . ,Me] is the system of forms representing a bimap ∗ : U × V ↣ W
relative to some fixed bases, then we have

∀u ∈ U,∀v ∈ V, u ∗ v = (uM1v
⊤ , . . . , uMev

⊤)(1)

as a row vector relative to the fixed basis of W , where the u’s and v’s on the right
of the equality are row vectors relative to the fixed bases of U and V , respectively.

Whenever we represent bimaps as systems of forms,
we assume we are working with F-bimaps for some field F.

http://magma.maths.usyd.edu.au/magma/

LINEAR METHODS FOR TENSORS LECTURE #1 (CENTROIDS) 3

2.2. Degeneracy. Recall from earlier lectures that, if

V ⊤ = {u ∈ U | u ∗ V = 0} U⊥ = {v ∈ V | U ∗ v = 0},(2)

then ∗ : U × V ↣ W induces a bimap

U × V W

U/V ⊤ × V/U⊥ U ∗ V

∗

•

where no information is lost. We therefore assume throughout these lectures that

∗ : U × V ↣ W is fully nondegenerate: V ⊤ = 0; U⊥ = 0; U ∗ V = W

Example 2.1. Here is an illustration of how one can pass to a nondegenerate
tensor using Magma. First, we build a bimap (as a 3-tensor) with degeneracies:

We can see from the system of forms that the tensor is degenerate: picturing
it as a cube of data, the entire right side of the cube—which corresponds to basis
vector ⟨0, 0, 1⟩ of V—consists of 0s. Let’s confirm our observation:

Now, let’s ask Magma to compute the induced nondegenerate tensor s:

Using our notation, we can see that, for the original tensor, V ⊤ is 0-dimensional,
U⊥ is 1-dimensional, and U∗V = W . Inspection of the system of forms for s reveals
that Magma has, as we would expect, simply lopped off the right face of 0s.

4 PETER BROOKSBANK

3. The centroid of a bimap

We have only assumed so far that U, V,W are abelian groups, and that ∗ :
U ×V ↣ W distributes over the addition in U and V . However, familiar instances
of bimaps also play nicely with scalars. One such is the dot product on Rn, where

∀u ∈ Rn, ∀v ∈ Rn, ∀α ∈ R, (αu) ∗ v = u ∗ (αv) = α(u ∗ v).

By thinking of α as an endomorphism of the abelian groups Rn and R, we can
generalize the notion of scalars playing nicely with bimaps.

Let us view an abelian group U as a right End(U)-module, writing ux for the
image of u ∈ U under x ∈ End(U). For Ω ⊆ End(U)×End(V)×End(W), say that
∗ : U × V ↣ W is an Ω-bimap if

∀u ∈ U, ∀v ∈ V, ∀(x, y, z) ∈ Ω, (ux) ∗ v = u ∗ (vy) = (u ∗ v)z.(3)

Without any further qualifications, any bimap ∗ : U ×V ↣ W is a Z-bimap, but it
makes sense to work with the largest set Ω of scalars for which ∗ is an Ω-bimap:

Definition. The centroid of a bimap ∗ : U × V ↣ W is the set

Cen(∗) = { (x, y, z) ∈ End(U)× End(V)× End(W) |
∀u ∈ U,∀v ∈ V, ux ∗ v = u ∗ vy = (u ∗ v)z }.

3.1. Actions on matrices. Let’s reformulate the centroid condition in terms of
matrices. Fixing bases of U, V,W , we can represent the linear transformations
x, y, z by matrices X,Y, Z. Referring to (1), we have

∀u ∈ U, ∀v ∈ V
ux ∗ v = (uXM1v

⊤ , . . . , uXMev
⊤)

u ∗ vy = (uM1Y
⊤v⊤ , . . . , uMeY

⊤v⊤)
(u ∗ v)z = (uM1v

⊤ , . . . , uMev
⊤)Z

For obvious reasons the first two actions are referred to as ‘inner’ and the third as
‘outer’. The condition ux ∗ v = u ∗ vy translates directly to the matrix equations

∀i ∈ {1, . . . , e} XMi = MiY
⊤(4)

The condition ux ∗ v = (u ∗ v)z also translates into a linear system:

∀i ∈ {1, . . . , e} XMi =

e∑
j=1

MjZji(5)

The point, in case it was not already obvious from the definition of Cen(∗), is that
the centroid can be computed as the solution of a system of linear equations. To
be more precise, it is the solution of a system of cde equations in the c2 + d2 + e2

unknown entries of the matrices X,Y, Z. The centroid can be computed efficiently!

3.2. Algebra of centroids. On the face of it, Cen(∗) is just a set of operators.
Well OK, since (0, 0, 0) ∈ Cen(∗) and Cen(∗) is the solution of a linear system, it
is a linear subspace of End(U)×End(V)×End(W). However, the universe decrees
that Cen(∗) possesses a richer algebraic structure:

Theorem 3.1. The centroid of a bimap is a commutative ring.

LINEAR METHODS FOR TENSORS LECTURE #1 (CENTROIDS) 5

Proof. Both commutativity and closure of the product on Cen(∗) follow from the
‘3-pile shuffle’ argument made in previous lectures. Let us review the argument.

Let (x, y, z), (x́, ý, ź) ∈ Cen(∗). For u ∈ U , v ∈ V , we have

(uxx́) ∗ v = ((ux) ∗ v)ź = (u ∗ (vy))ź =

{
u ∗ (vyý)
(u ∗ v)zź ,(6)

so (xx́, yý, zź) ∈ Cen(∗). Also, for u ∈ U , v ∈ V ,

(uxx́) ∗ v = ((ux) ∗ v)ź = (u ∗ (vy))ź = (ux́) ∗ (vy) = (ux́x) ∗ v,(7)

so u(xx́ − x́x) ∗ v = 0. As ∗ is nondegenerate, it follows that xx́ = x́x. Similarly
for the actions on the other coordinates.

Closure of Cen(∗) under addition is left as an exercise. □

Example 3.1. Computing the centroid is really the first step when studying a given
bimap ∗ : U × V ↣ W because it helps us position ∗ in its natural environment.
Here is an illustatrion of how to use Magma to compute the correct bimap:

The tensor t : F 4
8191×F 4

8191 ↣ F 2
8191 is built using a random-looking1 pair of 4×4

matrices. We see that the centroid C = Cen(t) is a 2-dimensional F8191-algebra,
so it could be F8191 × F8191, or it could be the field extension F81912 . Magma can
help us determine which one it is, but it turns out to be the field extension. Now,
we use the function TensorOverCentroid to write t as a F8191-bimap. We see, in
fact, that t is a bilinear F81912-form in disguise!

3.3. Diagonal blocks. Is it possible, in an example such as the last one, to en-
counter a 2-dimensional centroid whose structure is F8191×F8191 rather than F81912?
And how could we use the centroid to reveal the structure of the bimap? We saw
such an example in an earlier lecture. Let’s revisit that example now, and analyze
it using the centroid.

Example 3.2. I am referring to the ‘multiplication table’ example. Define a bimap
∗ : Q2 ×Q2 ↣ Q2 using the following pair of matrices:[

1 0
1 −2

]
,

[
0 1
0 −3

]
1Spoiler alert—it is not actually random! It was, of course, intentionally built to have a

nontrivial centroid. The code used to build it can be found in the accompanying files.

6 PETER BROOKSBANK

Earlier, we saw that we can interpret this bimap as the multiplication in the quotient
ring Q[x]/(x+1)(x+2). The following Magma session shows how this structure is
revealed using the centroid.

We see that Cen(∗) is again a 2-dimensional algebra. The first generator is the
identity. The second generator, C.2, is displayed as the diagonal join of its actions
on U , V and W . Its minimal polynomial is (x+ 1)(x+ 2), as anticipated. We can
continue using Magma to diagonalize the individual blocks, and then use that basis
to rewrite bimap:

In the interest of space, the construction of the change-of-basis matrices X,Y, Z
in Magma has been omitted, but rest assured it was basic linear algebra. The out-
come is the same as in the original multiplication table when we used ‘x + 2’ and
‘x + 1’ to label the rows and columns, namely we have discovered a diagonal block
decomposition of the bimap.

The example shows that block structures within tensor data correspond to al-
gebraic properties of linear invariants of the tensor. We will return to this idea
repeatedly, and in more detail, as we continue along our path.

3.4. The centroid of a general tensor. As noted earlier, we are focusing in
these lectures on bimaps (3-tensors) largely for reasons of notational and visual
convenience, but when it is appropriate we will explain how to define our algebraic

LINEAR METHODS FOR TENSORS LECTURE #1 (CENTROIDS) 7

invariants for tensors of arbitrary valence. For this, we will again follow the notation
set up in the lectures by Elina Rebeva and James Wilson.

If T is a tensor space with interpretation map

⟨ | ⟩ : T ×

(∏
a∈A

Va

)
→ ∆,

the centroid of t ∈ T is the set

Cen(t) =

{
ω ∈

∏
a∈A

End(Va)
∣∣∣ ∀a, b ∈ A, ⟨t|vaωa, vā⟩ = ⟨t|vbωb, vb̄⟩

}
(8)

If t is nondegenerate, then Cen(t) is a commutative ring.

References

[1] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 3-4 (1997), 235-265.

[2] Peter Brooksbank, Joshua Maglione, and James Wilson, The Tensor Space, https://github.
com/thetensor-space/TensorSpace.

https://github.com/thetensor-space/TensorSpace
https://github.com/thetensor-space/TensorSpace

	1. Overview & Objectives
	2. Notation
	2.1. Systems of forms
	2.2. Degeneracy

	3. The centroid of a bimap
	3.1. Actions on matrices
	3.2. Algebra of centroids
	3.3. Diagonal blocks
	3.4. The centroid of a general tensor

	References

