Spaces of matrices of bounded rank

J.M. Landsberg

Owen Professor of Mathematics, Texas A&M University

Supported by NSF grant AF-2203618

A problem in classical linear algebra

 $\mathbb{C}^{\mathbf{b}}\otimes \mathbb{C}^{\mathbf{c}}$: space of $\mathbf{b}\times \mathbf{c}$ matrices.

Let $E\subset\mathbb{C}^{\mathbf{b}}\otimes\mathbb{C}^{\mathbf{c}}$ be a linear subspace such that

 $\forall e \in E$, rank(e) < min{**b**, **c**}, say E has bounded rank. If $\forall e \in E$, rank(e) $\leq r$, say bounded rank r.

Example: $\sqrt{ }$ \vert x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 0 0 0 x_{10} 0 0 0 \setminus $\Big\}$, bounded rank 3. Example: $\sqrt{ }$ \mathcal{L} 0 x_1 x_2 $-x_1$ 0 x_3 $-x_2$ − x_3 0 \setminus , bounded rank 2.

Classical Q: What are the spaces of bounded rank?

Relation with tensors

Let $A=\mathbb{C}^{\mathbf{a}}, B=\mathbb{C}^{\mathbf{b}}, C=\mathbb{C}^{\mathbf{c}},$ and let $\mathcal{T}\in A{\otimes}B{\otimes}\mathcal{C}.$ ∃ 1-1 correspondence $T \in A \otimes B \otimes C$, $T \sim gT \forall g \in GL(A) \times GL(B) \times GL(C)$ \leftrightarrow $E \subset B \otimes C$ of dimension **a**, $E \sim hE \ \forall h \in GL(B) \times GL(C)$ Send $T \mapsto E := T(A^*)$. $T(A^*)$ bounded rank =: T is 1_A-degenerate T is 1-degenerate if $1_A, 1_B, 1_C$ degenerate

Least understood tensors: quantum information theory, Strassen's laser method for upper bounding exponent of matrix multiplication.

Classical examples

- 1. Compression spaces: $\exists B' \subset B^*, C' \subset C$ with $E(B') \subseteq C'$.
- 2. skew symmetric matrices of odd size: $\Lambda^2 V \subset V \otimes V$.
- 3. $V \to \text{Hom}(V, \Lambda^2 V)$, $w \mapsto (v \mapsto w \wedge v)$.

Exercise dim V odd: 2,3 same tensor.

1983: Thm. Atkinson/Llyod, Atkinson: classified bounded rank $r < 3$. No non-classical examples.

no progress on classification for 40 years.

1996: Westwick, first non-classical example $r = 8$. Since then, many with large r. In particular, have interesting moduli.

Theorem (Huang-L) 2023

Up to isomorphism, there exist 4 basic spaces (non-compression etc.) of bounded rank 4:

1.
$$
\Lambda^2 \mathbb{C}^5 \subset \mathbb{C}^5 \otimes \mathbb{C}^5
$$

\n2. $\mathbb{C}^5 \rightarrow \text{Hom}(\mathbb{C}^5, \Lambda^2 \mathbb{C}^5)$
\n3. $\begin{pmatrix} a_1 & -a_3 & -a_5 \\ a_1 & -a_4 & -a_6 \\ a_1 & a_2 & 0 \\ a_2 & 0 & a_3 & a_5 & 0 \\ 0 & a_2 & a_4 & a_6 & 0 & 0 \end{pmatrix} \subset \mathbb{C}^6 \otimes \mathbb{C}^6$,
\n4. $\begin{pmatrix} a_1 & a_2 & 0 & 0 & -a_5 & -a_6 \\ 0 & a_1 & 0 & 0 & 0 & -a_5 \\ 0 & 0 & a_1 & a_2 & a_3 & a_4 \\ 0 & 0 & 0 & a_1 & 0 & a_3 \\ a_3 & a_4 & a_5 & a_6 & 0 & 0 \\ 0 & a_3 & 0 & a_5 & 0 & 0 \end{pmatrix} \subset \mathbb{C}^6 \otimes \mathbb{C}^6$.

Geometry of case III

In general, A : algebra, get structure tensor $\mathcal{T}_A \in \mathcal{A}^* \otimes \mathcal{A}^* \otimes \mathcal{A}$, i.e., $T_A: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$, $(a, b) \mapsto ab$.

Four composition algebras \rightsquigarrow four exceptional complex simple Lie algebras.

e.g. quaternions $\rightsquigarrow E_7$, octonions $\rightsquigarrow E_8$

L-Manivel 2006: $E_{7\frac{1}{2}} \rightsquigarrow$ sextonions!

Example 3 is structure tensor of the sextonions.

Detour: Strassen's laser method

Exponent ω of matrix multiplication: 1968 ω < 2.81 much work, many people 1988 $\omega \leq 2.38$.

since 1988 essentially no improvement.

Strassen: instead of direct upper bounds on $M_{\langle n \rangle}$, use "easy" auxiliary tensors.

Essentially only 2 known such that could potentially prove $\omega = 2$:

<code>Small Coppersmith-Winograd tensor: $\mathcal{T}_{\mathsf{cw},2} \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ </code> monomial $a_1a_2a_3\in S^3\mathbb{C}^3$ considered as a tensor, i.e., $T_{cw,2}=\sum_{\sigma\in\mathfrak{S}_3}a_{\sigma(1)}\otimes a_{\sigma(2)}\otimes a_{\sigma(3)}$

"Skew small CW": $T_{skewcw,2} \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ element of $\Lambda^3 \mathbb{C}^3$ considered as a tensor, i.e.,

$$
\mathcal{T}_{\text{skewcw},2} = \sum_{\sigma \in \mathfrak{S}_3} \text{sgn}(\sigma) a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes a_{\sigma(3)}
$$

Would be very happy with something that could prove ≤ 2.37 .

Strassen's laser method cont'd

Rank $\mathbf{R}(T)$: smallest r such that T sum of r rank one tensors. Border rank $\underline{R}(T)$: smallest r such that T limit of rank r tensors. Example $W = a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_1 + a_2 \otimes b_1 \otimes c_1$, $\mathsf{R}(W) = 3$, ${\bf R}(W) = 2$, laser method gives good ($\omega \leq 2.4...$) with $T = W$.

Strassen: take high Kronecker power ⊠ of auxiliary tensor, where $T_1 \boxtimes T_2 = T_1 \otimes T_2 \in (A_1 \otimes A_2) \otimes (B_1 \otimes B_2) \otimes (C_1 \otimes C_2)$.

For example (Coppersmith-Winograd): $\omega \leq \log_2(\frac{4}{27}(\mathbf{R}(T_{cw,2}^{\boxtimes k}))^{\frac{3}{k}})$. $\underline{\mathbf{R}}(\mathcal{T}_{\mathsf{cw},2})=4>3$, if had 3 or (*const*.) 3^k large k would get $\omega=2.$

Thm (Conner-Gesmundo-L-Ventura): same holds for $T_{skewcw,2}$ Sad news: $\mathbf{R}(T_{skewcw,2}) = 5$ More sad news: Thm (Conner-Huang-L) $\underline{\mathbf{R}}(T_{cw,2}^{\boxtimes 2}) = 16 = 4^2$

Hopeful news and Example IV

 $\textsf{Thm (Conner-Gesmundo-L-Vertura):} \ \underline{\mathbf{R}}(\ \mathcal{T}^{\boxtimes 2}_{\textit{skewcw},2}) \leq 17 < 5^2$ $(in fact = (Connect-Harper-L))$

Thm (Huang-L) Example IV is $T_{\text{skewcw.2}} \boxtimes W$

and $\mathbf{R}(T_{skewcw,2} \boxtimes W) = 9 < 10$.

Opens new path to proving upper bounds on ω .

Ideas towards proof of main theorem: only four basic cases $r = 4$

Classical methods: dim $B, C \leq 7$, many reductions.

Algebraic geometry (Sylvester, Eisenbud-Harris): $T \in A \otimes B \otimes C \leadsto$

$$
\begin{array}{ccc}B^*{\otimes} {\cal O}_{{\Bbb P} A^*} &\longrightarrow C{\otimes} {\cal O}_{{\Bbb P} A^*}(1)\\ &\searrow&\swarrow\\ &{\Bbb P} A^* &\\ \end{array}
$$

invariants image sheaf.

Commutative algebra:

Buchsbaum-Eisenbud characterization of exact complexes Hilbert-Burch

Buchsbaum-Eisenbud generalization of HIlbert-Burch to codimension three Gorenstein.

 \rightarrow any other potential basic space is skew-symmetrizable.

Thank you for your attention

For more on **tensors**, their geometry and applications, resp. geometry and complexity, resp. asymptotic geometry:

Pre-order now! (AMS-GSM 243): Quantum computation and quantum information theory: a mathematical perspective