Spaces of matrices of bounded rank

J.M. Landsberg

Owen Professor of Mathematics, Texas A&M University

Supported by NSF grant AF-2203618

A problem in classical linear algebra

 $\mathbb{C}^{b} {\otimes} \mathbb{C}^{c} {:}$ space of $b \times c$ matrices.

Let $E \subset \mathbb{C}^{\mathbf{b}} \otimes \mathbb{C}^{\mathbf{c}}$ be a linear subspace such that

 $\forall e \in E$, rank(e) < min{**b**, **c**}, say *E* has bounded rank. If $\forall e \in E$, rank(e) $\leq r$, say bounded rank *r*.

Example: $\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & 0 & 0 & 0 \\ x_{10} & 0 & 0 & 0 \end{pmatrix}$, bounded rank 3. Example: $\begin{pmatrix} 0 & x_1 & x_2 \\ -x_1 & 0 & x_3 \\ -x_2 & -x_3 & 0 \end{pmatrix}$, bounded rank 2.

Classical Q: What are the spaces of bounded rank?

Relation with tensors

Let $A = \mathbb{C}^{\mathbf{a}}, B = \mathbb{C}^{\mathbf{b}}, C = \mathbb{C}^{\mathbf{c}}$, and let $T \in A \otimes B \otimes C$. \exists 1-1 correspondence $T \in A \otimes B \otimes C$, $T \sim gT \ \forall g \in GL(A) \times GL(B) \times GL(C)$ \leftrightarrow $E \subset B \otimes C$ of dimension **a**, $E \sim hE \ \forall h \in GL(B) \times GL(C)$ Send $T \mapsto E := T(A^*)$. $T(A^*)$ bounded rank =: T is 1_A -degenerate T is 1-degenerate if $1_A, 1_B, 1_C$ degenerate

Least understood tensors: quantum information theory, Strassen's laser method for upper bounding exponent of matrix multiplication.

Classical examples

- 1. Compression spaces: $\exists B' \subset B^*$, $C' \subset C$ with $E(B') \subseteq C'$.
- 2. skew symmetric matrices of odd size: $\Lambda^2 V \subset V \otimes V$.

3.
$$V \to \operatorname{Hom}(V, \Lambda^2 V)$$
, $w \mapsto (v \mapsto w \wedge v)$.

Exercise dim V odd: 2,3 same tensor.

1983: Thm. Atkinson/Llyod, Atkinson: classified bounded rank $r \leq 3$. No non-classical examples.

no progress on classification for 40 years.

1996: Westwick, first non-classical example r = 8. Since then, many with large r. In particular, have interesting moduli.

Theorem (Huang-L) 2023

Up to isomorphism, there exist 4 basic spaces (non-compression etc.) of bounded rank 4:

$$1. \ \Lambda^{2}\mathbb{C}^{5} \subset \mathbb{C}^{5} \otimes \mathbb{C}^{5}$$

$$2. \ \mathbb{C}^{5} \to \operatorname{Hom}(\mathbb{C}^{5}, \Lambda^{2}\mathbb{C}^{5})$$

$$3. \ \begin{pmatrix} a_{1} & -a_{3} & -a_{5} \\ a_{1} & -a_{4} & -a_{6} \\ a_{1} & a_{2} & 0 \\ a_{2} & 0 & a_{3} & a_{5} & 0 & 0 \\ 0 & a_{2} & a_{4} & a_{6} & 0 & 0 \end{pmatrix} \subset \mathbb{C}^{6} \otimes \mathbb{C}^{6},$$

$$4. \ \begin{pmatrix} a_{1} & a_{2} & 0 & 0 & -a_{5} & -a_{6} \\ 0 & a_{1} & 0 & 0 & 0 & -a_{5} \\ 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} \\ 0 & 0 & 0 & a_{1} & 0 & a_{3} \\ a_{3} & a_{4} & a_{5} & a_{6} & 0 & 0 \\ 0 & a_{3} & 0 & a_{5} & 0 & 0 \end{pmatrix} \subset \mathbb{C}^{6} \otimes \mathbb{C}^{6}.$$

Geometry of case III

In general, \mathcal{A} : algebra, get structure tensor $\mathcal{T}_{\mathcal{A}} \in \mathcal{A}^* \otimes \mathcal{A}^* \otimes \mathcal{A}$, i.e., $\mathcal{T}_{\mathcal{A}} : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$, $(a, b) \mapsto ab$.

Four composition algebras \rightsquigarrow four exceptional complex simple Lie algebras.

e.g. quaternions $\rightsquigarrow E_7$, octonions $\rightsquigarrow E_8$

L-Manivel 2006: $E_{7\frac{1}{2}} \rightsquigarrow$ sextonions!

Example 3 is structure tensor of the sextonions.

Detour: Strassen's laser method

Exponent ω of matrix multiplication: 1968 $\omega \leq$ 2.81 much work, many people 1988 $\omega \leq$ 2.38.

since 1988 essentially no improvement.

Strassen: instead of direct upper bounds on $M_{\langle n\rangle},$ use "easy" auxiliary tensors.

Essentially only 2 known such that could potentially prove $\omega = 2$:

Small Coppersmith-Winograd tensor: $T_{cw,2} \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ monomial $a_1 a_2 a_3 \in S^3 \mathbb{C}^3$ considered as a tensor, i.e., $T_{cw,2} = \sum_{\sigma \in \mathfrak{S}_3} a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes a_{\sigma(3)}$

"Skew small CW": $T_{skewcw,2} \in \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ element of $\Lambda^3 \mathbb{C}^3$ considered as a tensor, i.e.,

$$T_{skewcw,2} = \sum_{\sigma \in \mathfrak{S}_3} \operatorname{sgn}(\sigma) a_{\sigma(1)} \otimes a_{\sigma(2)} \otimes a_{\sigma(3)}$$

Would be very happy with something that could prove ≤ 2.37 .

Strassen's laser method cont'd

Rank $\mathbf{R}(T)$: smallest r such that T sum of r rank one tensors. Border rank $\underline{\mathbf{R}}(T)$: smallest r such that T limit of rank r tensors. Example $W = a_1 \otimes b_1 \otimes c_2 + a_1 \otimes b_2 \otimes c_1 + a_2 \otimes b_1 \otimes c_1$, $\mathbf{R}(W) = 3$, $\underline{\mathbf{R}}(W) = 2$, laser method gives good ($\omega \leq 2.4...$) with T = W.

Strassen: take high Kronecker power \boxtimes of auxiliary tensor, where $T_1 \boxtimes T_2 = T_1 \otimes T_2 \in (A_1 \otimes A_2) \otimes (B_1 \otimes B_2) \otimes (C_1 \otimes C_2)$.

For example (Coppersmith-Winograd): $\omega \leq \log_2(\frac{4}{27}(\mathbf{R}(T_{cw,2}^{\boxtimes k}))^{\frac{3}{k}})$. $\mathbf{R}(T_{cw,2}) = 4 > 3$, if had 3 or $(const.)3^k$ large k would get $\omega = 2$.

Thm (Conner-Gesmundo-L-Ventura): same holds for $T_{skewcw,2}$ Sad news: $\underline{\mathbf{R}}(T_{skewcw,2}) = 5$ More sad news: Thm (Conner-Huang-L) $\underline{\mathbf{R}}(T_{cw,2}^{\boxtimes 2}) = 16 = 4^2$

Hopeful news and Example IV

Thm (Conner-Gesmundo-L-Ventura): $\mathbf{\underline{R}}(T_{skewcw,2}^{\boxtimes 2}) \leq 17 < 5^2$ (in fact = (Conner-Harper-L))

Thm (Huang-L) Example IV is $T_{skewcw,2} \boxtimes W$

and $\underline{\mathbf{R}}(T_{skewcw,2} \boxtimes W) = 9 < 10.$

Opens new path to proving upper bounds on ω .

Ideas towards proof of main theorem: only four basic cases r = 4

Classical methods: dim $B, C \leq 7$, many reductions. Algebraic geometry (Sylvester, Eisenbud-Harris): $T \in A \otimes B \otimes C \rightsquigarrow$

invariants image sheaf.

Commutative algebra:

Buchsbaum-Eisenbud characterization of exact complexes Hilbert-Burch

Buchsbaum-Eisenbud generalization of HIIbert-Burch to codimension three Gorenstein.

 \rightsquigarrow any other potential basic space is skew-symmetrizable.

Thank you for your attention

For more on **tensors**, their geometry and applications, resp. **geometry and complexity**, resp. **asymptotic geometry**:

Pre-order now! (AMS-GSM 243): Quantum computation and quantum information theory: a mathematical perspective